精英家教网 > 初中数学 > 题目详情

【题目】如图,图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法,其中正确的说法是(  )

A. 汽车共行驶了120千米 B. 汽车在整个行驶过程中平均速度为40千米

C. 汽车返回时的速度为80千米/ D. 汽车自出发后1.5小时至2小时之间速度不变

【答案】C

【解析】分析:横轴代表时间,纵轴代表行驶的路程,据此判断相应的路程和时间即可.

详解:A、由图象可以看出,最远处到达距离出发地120千米处,但又返回原地,所以行驶的路程为240千米,错误,不符合题意;

B、平均速度为总路程÷总时间,总路程为240千米,总时间为4.5小时,所以平均速度为240÷4.5≈53千米/时,故错误,不符合题意;

C、汽车返回所用的时间是1.5小时,则平均速度为:=80(千米/时),正确,符合题意;

D、汽车自出发后3小时至4.5小时之间行驶的速度不变,故错误,不符合题意;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC,D为BC上一点,E为AC上一点,AD=AE.

(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=   °.

(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=   °,∠CDE=   °.

(3)设∠BAD=α,∠CDE=β猜想α,β之间的关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数y=kx经过点A,点A在第四象限,过点AAH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.

(1)求正比例函数的解析式;

(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.

(1)请填写下表

A(吨)

B(吨)

合计(吨)

C

   

   

240

D

   

x

260

总计(吨)

200

300

500

(2)设C、D两市的总运费为w元,求wx之间的函数关系式,并写出自变量x的取值范围;

(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆⊙O,则弧AC的长等于(  )

A. π B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象l与坐标轴分别交于点EF,与双曲线y=x0)交于点P1n),且FPE的中点,直线x=al交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一元二次方程ax2bxc0(a≠0)满足4a2bc0,且有两个相等的实数根,则( )

A. baB. c2aC. a(x2)20(a≠0)D. a(x2)20(a≠0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面解方程的步骤,在后面的横线上填写此步骤的依据:

解:去分母,得.①依据:_________

去括号,得.

移项,得.②依据:__________

合并同类项,得.

系数化为1,得.

是原方程的解.

查看答案和解析>>

同步练习册答案