精英家教网 > 初中数学 > 题目详情

 如图,抛物线的顶点为A,与y 轴交于点B

(1)求点A、点B的坐标.

(2)若点Px轴上任意一点,求证:

(3)当最大时,求点P的坐标.           

 


解:(1)抛物线y轴的交于点B,

x=0得y=2.

B(0,2)

        ∵

A(―2,3)

(2)当点PAB的延长线与x轴交点时,

当点Px轴上又异于AB的延长线与x轴的交点时,

在点PAB构成的三角形中,

综合上述:

(3)作直线ABx轴于点P,由(2)可知:当PA―PB最大时,点P是所求的点

AHOPH

BOOP

∴△BOP∽△AHP

    ∴ 

由(1)可知:AH=3、OH=2、OB=2,

OP=4,故P(4,0) 

注:求出AB所在直线解析式后再求其与x轴交点P(4,0)等各种方法只要正确也相应给分.

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线的顶点为P(1,0),一条直线与抛物线相交于A(2,1),B(-
12
,m
)两精英家教网点.
(1)求抛物线和直线AB的解析式;
(2)若M为线段AB上的动点,过M作MN∥y轴,交抛物线于点N,连接NP、AP,试探究四边形MNPA能否为梯形?若能,求出此点M的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,抛物线的顶点为A(1,-4),且过点B(3,0).
(1)求该抛物线的解析式;
(2)将该抛物线向右平移几个单位,可使平移后的抛物线经过原点?并直接写出平移后抛物线与x轴的另一个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)已知,如图,抛物线的顶点为C(1,-2),直线y=kx+m与抛物线交于A、B两点,其中OA=3,B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.
(1)求直线AB的解析式;
(2)设点P的横坐标为x,求点E坐标(用含x的代数式表示);
(3)点D是直线AB与这条抛物线对称轴的交点,是否存在点P,使得以点P、E、D为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)如图,抛物线的顶点为C(-1,-1),且经过点A、点B和坐标原点O,点B的横坐标为-3.
(1)求抛物线的解析式;
(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为
顶点的四边形为平行四边形,请直接写出点D的坐标;
(3)若点P是抛物线第一象限上的一个动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案