【题目】如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB,BC上分别找一点E,F,使△DEF的周长最小,此时,∠EDF=______。(用含α的代数式表示)
【答案】180°2α
【解析】
根据要使△DEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出D关于AB和BC的对称点P,Q,结合四边形的内角和即可得出答案。
如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求。
∵四边形ABCD中,∠A=∠C=90°,∠B=α,
∴∠PDQ=180°α,
在三角形PDQ中,∠P+∠Q=180°-∠PDQ =α,
∵点P与点D关于AB对称,点D与点Q关于DQ对称,
∴∠P=∠ADE,∠Q=∠FDQ
∴∠ADE+ FDQ=∠P+∠Q=α
∴∠EDF=∠PDQ-(∠ADE+ ∠FDQ)=180°2α
科目:初中数学 来源: 题型:
【题目】为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
(1)求该班总人数;
(2)根据计算,请你补全两个统计图;
(3)已知该班甲同学四次训练成绩为85,95,85,95,乙同学四次成绩分别为85,90,95,90,现需从甲、乙两同学中选派一名同学参加校级比赛,你认为应该选派哪位同学并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其他条件不变.求证:EF=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为( )
A. 3 B. 4 C. 2.5 D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠BAC=60°,点0是△ABC内一点,△AB0△ACD,连接OD.
(1)求证△AOD为等边三角形。
(2)如图2,连接OC,若∠BOC=130°,∠AOB=.
①求∠OCD的度数
②当△OCD是等腰三角形时,求∠的度数
、
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).
(1)平移后的三个顶点坐标分别为:.A1( ),B1( ),C1( ).
(2)在上图中画出平移后三角形A1B1C1;
(3)画出△AOA1并求出△AOA1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中:
两条直线相交只有一个交点;
两条直线不是一定有公共点;
直线与直线是两条不同的直线;
两条不同的直线不能有两个或更多公共交点.
其中正确的是( )
A. (1)(2) B. (1)(4) C. (1)(2)(4) D. (2)(3)(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com