精英家教网 > 初中数学 > 题目详情
已知:如图一次函数y=
12
x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.
分析:先求出点A坐标为(6,0),点B坐标为(0,-3),由于DE⊥AB,则∠AEC=90°,利用等角的余角相等得到∠ODC=∠EAC,易证得Rt△ODC∽Rt△OAB,得到OD:OA=OC:OB,即OD:6=4:3,
可求出OD=8,得到点D的坐标为(0,8);然后利用待定系数法求出直线CD的解析式为y=-2x+8,再解由y=
1
2
x-3和y=-2x+8的方程组即可得到点E坐标.
解答:解:对于y=
1
2
x-3,令x=0,则y=-3;令y=0,x=6,
∴点A坐标为(6,0),点B坐标为(0,-3),
∵DE⊥AB,
∴∠AEC=90°,
∴∠ODC=∠EAC,
∴Rt△ODC∽Rt△OAB,
∴OD:OA=OC:OB,即OD:6=4:3,
∴OD=8,
∴点D的坐标为(0,8);
设过CD的直线解析式为y=kx+8,将C(4,0)代入得0=4k+8,解得k=-2,
∴直线CD的解析式为y=-2x+8,
解方程组
y=
1
2
x-3
y=-2x+8
x=
22
5
y=-
4
5

∴点E的坐标为(
22
5
,-
4
5
).
点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.也考查了待定系数法求函数解析式以及相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图一次函数y=
1
2
x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=
1
2
x2+bx+c的图象与一次函数y=
1
2
x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年山东省临沂市实验中学中考数学模拟试卷(一)(解析版) 题型:解答题

已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年湖北省荆州市芦陵中学中考数学模拟试卷(一)(解析版) 题型:解答题

已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年湖北省荆州市中考模拟试题(一)数学卷 题型:解答题

(12分)已知:如图一次函数yx+1的图象与x轴交于点A,与y轴交于点B;二次函数yx2bxc的图象与一次函数yx+1的图象交于BC两点,与x轴交于DE两点且D点坐标为(1,0)

(1)求二次函数的解析式;

(2)求四边形BDEC的面积S

(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案