分析 根据矩形的性质得出∠ABC=90°,AC=BD,AC=2AO,BD=2B0,求出AO=BO,得出等边三角形AOB,求出AC=2AO=4,根据勾股定理求出BC即可.
解答 解:∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,AC=2AO,BD=2B0,
∴AO=BO,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AO=AB=2,
∴AC=2AO=4,
在Rt△ABC中,由勾股定理得:BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.
点评 本题考查了矩形的性质,等边三角形的性质和判定,勾股定理的应用,解此题的关键是能根据矩形的性质和等边三角形的性质求出AC的长,注意:矩形的四个角都是直角,矩形的对角线互相平分且相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com