精英家教网 > 初中数学 > 题目详情
14、如图,OB平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为(  )
分析:根据BO平分∠CBA,CO平分∠ACB,且MN∥BC,可得出MO=MC,NO=NB,所以三角形AMN的周长是AB+AC.
解答:解:∵BO平分∠CBA,CO平分∠ACB,,
∴∠NBO=∠OBC,∠OCM=∠OCB,
∵MN∥BC,
∴∠NOB=∠OBC,∠MOC=∠OCB,
∴∠NBO=∠NOB,∠MOC=∠MCO,
∴MO=MC,NO=NB,
∵AB=12,AC=18,
∴△AMN的周长=AM+MN+AN=AB+AC=12+18=30.
故选A.
点评:本题主要考查学生对考查了等腰三角形的判定和性质以及平行线的性质等知识点的理解和掌握,难度不大,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,A是∠MON边OM上一点,AE∥ON.
(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点C的坐标是(0,3),点A的坐标是(8,0),点B的坐标是(4,3),P、Q分别是x、y轴上的两个动点,点P从C出发,在线段CB上以1个单位/秒的速度向点B移动,点Q从A出发,在线段AO上以精英家教网2个单位/秒的速度向点O 移动.设点P、Q同时出发,运动的时间为t(秒)
(1)当t为何值时,PQ平分四边形OABC的面积?
(2)当t为何值时,PQ⊥OB?
(3)当t为何值时,PQ∥AB?
(4)当t为何值时,△OPQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

感受理解
如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是
EF=FD
EF=FD

自主学习
事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路
如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等
学以致用
参考上述学到的知识,解答下列问题:
如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC,∠ABC=90°,CO平分∠ACB交于AB于O,D为AC上一点,且CD=CB,E为AO上一点,OE=OB,连接DE
①试判断直线DE与OC的位置关系,并证明你的结论
②若AD=4,CD=6,求AE的长.

查看答案和解析>>

科目:初中数学 来源:百分学生作业本课时3练1测 七年级数学(下) 适用人教课标版学生 人教课标版 题型:059

试试你的观察能力和分析能力.

如图,已知CB∥OA,∠C=100°,E、F分别为CB上的点,且OB平分∠FOA,OE平分∠COF.

(1)求∠EOB的度数;

(2)若左、右移动AB,那么∠EOB的值是否随之发生变化?若变,找出变化规律;若不变,说明理由.

查看答案和解析>>

同步练习册答案