【题目】如图,在中,,,以为直径作交于点,是的中点,连接.点在上,连接并延长交的延长线于点.
(1)求证:是的切线;
(2)连接,求的最大值.
【答案】(1)见解析;(2)
【解析】
(1)连接OD,AD.根据圆周角定理得到∠ADB=90°,求得∠ADC=90°,根据线段中点的定义得到DE=AE,求得∠EAD=∠EDA,根据等腰三角形的性质得到∠OAD=∠ODA,推出OD⊥DE,于是得到结论;
(2)过点F作FH⊥AB于点H,连接OF,得到∠AHF=90°.根据余角的想性质得到∠G=∠BAF,根据相似三角形的性质得到,由垂线段最短可得FH≤OF,当且仅当点H,O重合时等号成立.于是得到结论.
(1)证明:连接,.
∵为直径,点在上,
∴,
∴.
∵是的中点,
∴,
∴.
∵,
∴.
∵,
∴,
即,
∴.
∵是半径的外端点,
∴是的切线.
(2)过点作于点,连接,
∴.
∵为直径,点在上,
∴,
∴.
∵,
∴,
∴.
又,
∴,
∴.
由垂线段最短可得,
当且仅当点,重合时等号成立.
∵,
∴上存在点使得,此时点,重合,
∴,
即的最大值为.
科目:初中数学 来源: 题型:
【题目】将一个矩形纸片放置在平面直角坐标系中,点,点,点E,F分别在边,上.沿着折叠该纸片,使得点A落在边上,对应点为,如图①.再沿折叠,这时点E恰好与点C重合,如图②.
(Ⅰ)求点C的坐标;
(Ⅱ)将该矩形纸片展开,再折叠该矩形纸片,使点O与点F重合,折痕与相交于点P,展开矩形纸片,如图③.
①求的大小;
②点M,N分别为,上的动点,当取得最小值时,求点N的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次台风来袭时,一棵笔直大树树干AB(假定树干AB垂直于水平地面)被刮倾斜7°(即∠BAB′=7°)后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,AD=5米,求这棵大树AB的高度.(结果保留根号)(参考数据:sin37≈0.6,cos37=0.8,tan37≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源,生活垃圾一般按如图所示A、B、C、D四种分类方法回收处理,某城市环保部门为了提高宣传实效,抽样调查、统计了部分居民小区一段时间内生活垃圾的分类处理情况,并将调查统计结果绘制成如下两幅不完整的统计图表:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共 吨;
(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮和小刚利用学过的测量知识测量一座房子的高度,如图所示,他们先在地面上的点处竖直放了一根标杆,在房子和标杆之间的地面上平放一平面镜,并在镜面上做了一个标记,小刚来回移动平面镜,当这个标记与地面上的点重合时,小亮在标杆顶端处刚好看到房子的顶端点在镜面中的像与镜面上的标记重合,此时,在处测得房子顶端点的仰角为,点到点的距离为0.8米.标杆的长度为1米,已知点在同一水平直线上,且均垂直于,求房子的高度(平面镜的厚度忽略不计)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知菱形ABCD中,对角线AC和BD相交于点O,AC=8,BD=6,动点P在边AB上运动,以点O为圆心,OP为半径作⊙O,CQ切⊙O于点Q.则在点P运动过程中,切线CQ的长的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=8,BC=6,点P从点B出发以1个单位/s的速度向点A运动,同时点Q从点C出发以2个单位/s的速度向点B运动.当以B,P,Q为顶点的三角形与△ABC相似时,运动时间为( )
A.sB.sC.s或sD.以上均不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com