精英家教网 > 初中数学 > 题目详情
如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米(即NC=4.5米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.
设抛物线解析式为y=ax2+6,(1分)
依题意得,B(10,0).
∴a×102+6=0,
解得:a=-0.06,
即y=-0.06x2+6.(4分)
当y=4.5时,-0.06x2+6=4.5,
解得x=±5,
∴DF=5,EF=10,
即水面宽度为10米.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-x2+bx+c的图象与x轴交于点A、B,与y轴交于点C,其顶点为D,且直线DC的解析式为y=x+3.
(1)求二次函数的解析式;
(2)求△ABC外接圆的半径及外心的坐标;
(3)若点P是第一象限内抛物线上一动点,求四边形ACPB的面积最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A,B,M的坐标分别为(1,4)、(4,4)和(-1,0),抛物线y=ax2+bx+c的顶点在线段AB(包括线段端点)上,与x轴交于C、D两点,点C在线段OM上(包括线段端点),则点D的横坐标m的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1如图1所示,现将C1以y轴为对称轴进行翻折,得到新的抛物线C2
(1)求抛物线C2的解析式;
(2)在图1中,将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,请直接(不需要写过程)写出矩形的周长;
(3)如图2,若抛物线C1的顶点为M,点P为线段BM上一动点(不与点M、B重合),PN⊥x轴于N,请求出PC+PN的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x=______,抛物线与x轴的另一个交点D的坐标为______;
(2)求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-
1
2
x-1
上,且过点A(4,0).
(1)求这个抛物线的解析式;
(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OPAB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;
(3)设点C(1,-3),请在抛物线的对称轴确定一点D,使|AD-CD|的值最大,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A、B两点.
(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)在(2)的基础上,设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

武汉银河影院对去年贺岁片《非诚勿拢》的售票情况进行调查:若票价定为20元/张,则每场可卖电影票400张,若单价每涨1元,每场就少售出8张,设每张票涨价x元(x为正整数).
(1)求每场的收入y与x的函数关系式;
(2)设某场的收入为9000元,此收入是否是最大收入?请说明理由;
(3)请借助图象分析,售价在什么范围内每趟的总收入不低于8000元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.
(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式;求出此函数与x轴的交点坐标,并写出自变量的取值范围;
(2)当x是多少时,种植菊花的面积最大,最大面积是多少?请在格点图中画出此函数图象的草图(提示:找三点描出图象即可).

查看答案和解析>>

同步练习册答案