精英家教网 > 初中数学 > 题目详情
13.如图,已知∠A=∠C,∠1与∠2互补,求证:AB∥CD.
要求:写出推理步骤和每一步的推理依据.

分析 先根据同旁内角互补,两直线平行,判定AD∥BC,再根据两直线平行,同旁内角互补,得出∠C+∠ADC=180°,再根据∠A=∠C即可得到∠A+∠ADC=180°,即可判定AB∥CD.

解答 证明:∵∠1与∠2互补(已知),
∴AD∥BC(同旁内角互补,两直线平行),
∴∠C+∠ADC=180°(两直线平行,同旁内角互补),
又∵∠A=∠C(已知),
∴∠A+∠ADC=180°(等量代换),
∴AB∥CD(同旁内角互补,两直线平行).

点评 本题主要考查了平行线的性质与判定的运用,解题时注意:同旁内角互补,两直线平行;两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=30°;如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=60°;
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,则∠EAF=90°;在△AEF中,如果有一个角是另一个角的$\frac{3}{2}$倍,求∠ABO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{12}$-$\sqrt{48}$+$|{\sqrt{3}-2}|$
(2)($\sqrt{6}$÷$\sqrt{3}$+$\sqrt{8}$)×$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.你能化简 (a-1)(a99+a98+a97+…+a2+a+1)吗?
我们不妨先从简单情况入手,发现规律,归纳结论.
(1)先填空:(a-1)(a+1)=a2-1;(a-1)(a2+a+1)=a3-1;(a-1)(a3+a2+a+1)=a4-1;…
由此猜想:(a-1)(a99+a98+a97+…+a2+a+1)=a100-1
(2)利用这个结论,你能解决下面两个问题吗?
①求 2199+2198+2197+…+22+2+1 的值;
②若 a5+a4+a3+a2+a+1=0,则a6等于多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:
学生孝敬父母情况统计表:
选项频数频率
Am0.15
B60p
Cn0.4
D480.2
(1)表中m=36,n=96,p=0.25.
(2)这次被调查的学生有多少人?并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在△ABC中,已知BC=4cm,以边AC的中点P为圆心1cm为半径画⊙P,以边AB的中点Q为圆心x cm长为半径画⊙Q,如果⊙P与⊙Q相切,那么x=1或3cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:抛物线y=ax2+bx-3经过点A(7,-3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.
(1)求m的值;
(2)求这条抛物线的表达式;
(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.不等式3x+2<8的解集是x<2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若-x4y6与xm-1y3n是同类项,则(1-m)n=16.

查看答案和解析>>

同步练习册答案