分析 (1)欲证明四边形CEDG是平行四边形,只要证明DE∥CG,DE=CG即可.
(2)由四边形四边形CEDG是平行四边形,推出DH=CH,GH=HE,设DH=CH=a,则AD=CD=2a,由∠A=∠A,∠AEH=∠ADE=90°,推出△ADE∽△AEH,推出AE2=AD•AH=2a•3a=6a2,推出AE=$\sqrt{6}$a,在Rt△AEH中,HE=$\sqrt{A{H}^{2}-A{E}^{2}}$=$\sqrt{(3a)^{2}-(\sqrt{6}a)^{2}}$=$\sqrt{3}$a,推出AE=$\sqrt{2}$HE,因为GH=HE,AE=EB=CE=CD,即可推出线段AE、EB、EC、GD都是线段GH的$\sqrt{2}$倍.
解答 (1)证明:如图1中,
∵∠ACB=90°,AE=EB,
∴EC=EA=EB,
∵EF⊥BC,
∴CF=FB,
∵AD=DC,AE=EB,
∴DE∥BC,DE=$\frac{1}{2}$BC=BF,
∵CG=BF,
∴DE=CG,DE∥CG,
∴四边形四边形CEDG是平行四边形;
(2)解:如图2中,
∵四边形四边形CEDG是平行四边形,
∴DH=CH,GH=HE,设DH=CH=a,则AD=CD=2a,
∵∠A=∠A,∠AEH=∠ADE=90°,
∴△ADE∽△AEH,
∴AE2=AD•AH=2a•3a=6a2,
∴AE=$\sqrt{6}$a,
在Rt△AEH中,HE=$\sqrt{A{H}^{2}-A{E}^{2}}$=$\sqrt{(3a)^{2}-(\sqrt{6}a)^{2}}$=$\sqrt{3}$a,
∴AE=$\sqrt{2}$HE,
∵GH=HE,AE=EB=CE=CD,
∴线段AE、EB、EC、GD都是线段GH的$\sqrt{2}$倍.
点评 本题考查平行四边形的性质、三角形的中位线定理、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com