精英家教网 > 初中数学 > 题目详情
17.如图,AB∥CD,DB⊥BC,∠BDC=50°,则∠FBE的度数是(  )
A.50°B.45°C.40°D.30°

分析 根据三角形内角和定理求出∠BCD,再根据平行线的性质,即可得出∠FBE的度数.

解答 解:∵DB⊥BC,
∴∠CBD=90°,
∵∠BDC=50°,
∴∠BCD=40°,
∵CD∥AB,
∴∠FBE=∠BCD=40°,
故选:C.

点评 本题考查了三角形内角和定理,平行线性质等的应用,解决问题的关键是求出∠DCB的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知A(-1,-1),B(3,-1),C(4,5),P点在y轴,且S△PAB=2S△ABC,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在平面直角坐标系中,已知点A(-2,2)、B(3,4)、C(0,-1),直线y=kx+b过点C且与线段AB有交点,则k的取值范围是k≤-$\frac{3}{2}$或k≥$\frac{5}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图正方形网格中,小正方形的边长为1,△ABC的顶点在格点上,判断△ABC是否是直角三角形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在矩形ABCD中,以点B为圆心,BC长为半径画弧,交AD边于点E,连接BE,过C点作CF⊥BE,垂足为F
(1)猜想线段BF与图中现有的哪一条线段相等,并加以证明.
(2)求证:FE=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:如图1,在平面直角坐标系中,点O为坐标原点,点A在x轴正半轴上,点C在第一象限,且∠COA=60°,以OA、OC为邻边作菱形OABC,且菱形OABC的面积为18$\sqrt{3}$.
(1)求B、C两点的坐标;
(2)动点P从C点出发沿射线CB匀速运动,同时动点Q从A点出发沿射线BA的方向匀速运动,P、Q两点的运动速度均为2个单位/秒,连接PQ和AC,PQ和AC所在直线交于点D,点E为线段BQ的中点,连接DE,设动点P、Q的运动时间为t,请将△DQE的面积S用含t的式子表示,并直接写出t的取值范围;
(3)在(2)的条件下,过点Q作QF⊥y轴于点F,当t为何值时,以P、B、F、Q为顶点的四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列式子中,不是二次根式的是(  )
A.$\sqrt{2}$B.$\sqrt{a^2}$C.$\sqrt{a}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列事件是必然事件的是(  )
A.打开电视机,正在播放《中国好声音》
B.上学路上经过十字路口遇上红灯
C.掷一枚均匀的硬币,正面朝上
D.从1、2、3、4、5这五个数中任取一个数,取到的数一定大于0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.x12÷x3等于(  )
A.x4B.x15C.x9D.x36

查看答案和解析>>

同步练习册答案