精英家教网 > 初中数学 > 题目详情

四个连续自然数,中间两个数的积比前后两个数的积大2,证明这一结论是否正确.

答案:
解析:

  证明:设这四个连续自然数分别为:n、n+1、n+2、n+3.

  则(n+1)(n+2)-n(n+3)

  =(n2+n+2n+2)-(n2+3n)

  =n2+3n+2-n2-3n

  =2.

  ∴结论正确.

  分析:连续自然数可用含n的代数式表示出来:n、n+1、n+2、n+3,再按题意求出两个积的差,即可证明结论的正确性.

  点拨:有关数的问题的解法关键是合理表示相关的数,再根据整式的相关运算性质进行计算.本题还可以用其他方式表示四个数:为n-1、n、n+1、n+2等.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网将连续的奇数1,3,5,7,…,排成如图所示的数表,用十字框任意框出5个数.
探究规律一:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为
 

结论:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是
 

探究规律二:
落在十字框中间且又是第二列的奇数是15,27,39…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列,第五列的奇数分别可表示为
 

运用规律:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是
 
.这个奇数落在从左往右第
 
列.
(2)请你写出一个不能够框在十字框中间的且大于500的奇数:
 

(3)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.精英家教网
变通运用:
若把这些奇数重新排列如右图,解答下列问题:
(1)下列能被十字框框在中间的奇数是(
 
 )
A.841   B.1121   C.1263  D.1091
(2)被框在十字框中的五个数之和可能是1925吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

将连续的奇数1,3,5,7,…,排成如下图的数表,用图中所示的十字框可任意框出5个数.
【探究规律一】:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为
5a
5a

【结论】:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是
5
5

【探究规律二】:落在十字框中间且又是第二列的奇数是15,27,39,51…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列的奇数分别可表示为
12m+5,13m+7
12m+5,13m+7

【运用规律】:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是
1025
1025
;这个奇数落在从左往右第
3
3
列.
(2)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源:漫游数学世界八年级(上) 题型:044

试应用整式运算,说明下列结论的正确性.

(1)四个连续自然数中,中间两个数的积比首末两个数的积大;

(2)四个连续自然数的积与1的和一定是平方数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将连续的奇数1,3,5,7,…,排成如图所示的数表,用十字框任意框出5个数.
探究规律一:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为______.
结论:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是______.
探究规律二:
落在十字框中间且又是第二列的奇数是15,27,39…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列,第五列的奇数分别可表示为______.
运用规律:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是______.这个奇数落在从左往右第______列.
(2)请你写出一个不能够框在十字框中间的且大于500的奇数:______.
(3)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.
变通运用:
若把这些奇数重新排列如右图,解答下列问题:
(1)下列能被十字框框在中间的奇数是(______ )
A.841  B.1121  C.1263 D.1091
(2)被框在十字框中的五个数之和可能是1925吗?说说你的理由.

查看答案和解析>>

同步练习册答案