精英家教网 > 初中数学 > 题目详情
精英家教网如图,AB是⊙O的直径,点C在⊙O的切线BF上,过C作直线CE⊥BF,交⊙O于点D、点E,连接AE、
AD和BD.
(1)请找出一对相似三角形,并证明你的结论;
(2)若CD=1,AB=5,求tan∠ADE的值.
分析:(1)由已知BF是⊙O的切线,可推出∠CBD=∠BAD,又AB是⊙O的直径,CE⊥BF,所以∠ADB=∠BCD=90°,所以△ADB∽△BCD.
(2)已知CE⊥BF,点C在⊙O的切线BF上,∴∠ABC=∠DCF,则AB∥CE,∴∠ADE=∠BAD,所以求出tan∠BAD即得tan∠ADE的值.由(1)△ADB∽△BCD得
CD
BD
=
BD
AB
,则能求出BD,再根据勾股定理求出AD,所以求出tan∠BAD.
解答:解:(1)△ADB∽△BCD.
∵已知BF是⊙O的切线,
∴∠CBD=∠BAD,
又AB是⊙O的直径,CE⊥BF,
∴∠ADB=∠BCD=90°,
∴△ADB∽△BCD.

(2)已知CE⊥BF,点C在⊙O的切线BF上,
∴∠ABC=∠DCF,
∴AB∥CE,
∴∠ADE=∠BAD,
∵△ADB∽△BCD,
CD
BD
=
BD
AB

∴BD2=CD•AB=1×5=5,
∴BD=
5

在Rt△ABD中,由勾股定理得:
AD=
AB2-BD2
=
52-(
5
)
2
=2
5

∴tan∠BAD=
BD
AD
=
5
2
5
=
1
2

∴tan∠ADE=tan∠BAD=
1
2
点评:此题考查的知识点是切线的性质、相似三角形的判定与性质及解直角三角形,关键是运用好切线的性质及相似三角形的性质及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案