精英家教网 > 初中数学 > 题目详情
11.在一张长为8cm、宽为7cm的长方形纸片上,要剪下一个腰长为5cm的等腰三角形,要求等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点都在长方形的边上,则剪下的等腰三角形的面积是12.5或$\frac{5}{2}$$\sqrt{21}$或10cm2

分析 因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解即可;(3)先求出AE边上的高DF,再代入面积公式求解即可.

解答 解:分三种情况计算:
(1)当AE=AF=5厘米时,

∴S△AEF=$\frac{1}{2}$AE•AF=$\frac{1}{2}$×5×5=12.5厘米2
(2)当AE=EF=5厘米时,如图

BF=$\sqrt{E{F}^{2}-B{E}^{2}}$=$\sqrt{21}$厘米,
∴S△AEF=$\frac{1}{2}$•AE•BF=$\frac{1}{2}$×5×$\sqrt{21}$=$\frac{5}{2}$$\sqrt{21}$厘米2
(3)当AE=EF=5厘米时,如图

DF=$\sqrt{E{F}^{2}-D{E}^{2}}$=4厘米,
∴S△AEF=$\frac{1}{2}$AE•DF=$\frac{1}{2}$×5×4=10厘米2
故答案为:12.5或$\frac{5}{2}$$\sqrt{21}$或10.

点评 本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论是解题的关键也是此题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,△ABC是等腰直角三角形,点D是斜边AB边上一动点,CE⊥CD(点E在CD右侧),CD=CE,DE交BC于F.
(1)求证:△ACD∽△BDF;
(2)若$\frac{BF}{CF}$=$\frac{3}{5}$,DF<EF,求$\frac{DF}{EF}$的值;
(3)若AC=18$\sqrt{2}$、CD=6$\sqrt{13}$,求△CDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.

方案设计
某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2=PA+PB(km)(其中点A′与点A关于l对称,A′B与l交于点P).
观察计算
(1)在方案一中,d1=a+2km(用含a的式子表示)
(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=$\sqrt{{a}^{2}+24}$km(用含a的式子表示).
探索归纳
(1)①当a=4时,比较大小:d1<d2(填“>”、“=”或“<”);
②当a=6时,比较大小:d1>d2(填“>”、“=”或“<”);
(2)请你参考方框中的方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,
应选择方案一还是方案二?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知直线l1∥l2,直线l和直线l1、l2分别交于点C和D,在直线l上有一点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)当点P在C、D之间运动时,试说明:∠PAC+∠PBD=∠APB;
(2)当点P在直线l1的上方运动时,试探索∠PAC、∠APB、∠PBD之间的关系又是如何?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,点E在矩形ABCD的边CD上,满足CE:ED=7:4,连结BE,过E作BE的垂线交边AD于点F,已知BE=4EF,DF=a,则AB等于(  )
A.$\frac{45}{7}$aB.$\frac{44}{7}$aC.4aD.7a

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a-b|.利用此结论,回答以下问题:
(1)数轴上表示2和5的两点的距离是3,数轴上表示-20和-5的两点之间的距离是15,数轴上表示15和-30的两点之间的距离是40.
(2)数轴上表示x和-1的两点A,B之间的距离是|x+1|,如果|AB|=2,那么x是1或-3.
(3)式子|x+1|+|x-2|+|x-3|的最小值是4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD=2a,点E、F分别是BC、CD边的中点.连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论中正确的有①②(写出正确结论的序号)
①四边形ABED为平行四边形;
②CP平分∠BCD;
③四边形QPDA为等腰梯形;
④S四边形AQCD=$\frac{5}{3}$a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知直角梯形ABCD中,AB∥DC,∠D=90°,CA=CB,设$\overrightarrow{AD}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,
(1)试用$\overrightarrow{a}$、$\overrightarrow{b}$表示下列向量:
$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow{b}$;
$\overrightarrow{CB}$=-$\overrightarrow{a}$+$\overrightarrow{b}$;
(2)请在图中画出表示$\overrightarrow{AC}$+$\overrightarrow{AB}$的和向量.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.夏季天气炎热,某水架超市打算购进两种不问类型的西瓜共30000千克,已知甲种西瓜进价为0.5元/千克,乙种西瓜0.6元/千克.
(1)若购进甲种西瓜x千克,共需y元,请写出y关于x的函数关系式;
(2)运回超市后.甲种西瓜售价为1.0元/千克,乙种西瓜售价为1.5/千克,运输途中支出人工费、过路费及损耗等一共5000元,求出所得利润z与x的函数关系式;
(3)如果超市至少想盈利18000元,应怎样安排进货?

查看答案和解析>>

同步练习册答案