精英家教网 > 初中数学 > 题目详情

【题目】温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进两种型号的暖风机共900台,每台型号暖风机售价为600元,每台型号暖风机售价为900元.

1)若要使得两种型号暖风机的销售额不低于69万元,则至多购进多少台型号暖风机?

2)由于质量超群、品质卓越,11月下旬购进的两种型号的暖风机全部售完.该商场在12上旬又购进了两种型号的暖风机若干台,并且进行“双12”促销活动,每台型号暖风机的售价比其11月下旬的售价优惠型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加,每台型号暖风机的售价比其11月下旬的售价优惠型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了,求的值.

【答案】1)至少购进型暖风机400台;(2的值为12.5

【解析】

1)设购进型暖风机台,则B台,根据单价乘以数量等于总价,分别表示出两种型号暖风机的总价,建立不等式即可求解;

2)分别表示12月上旬A型、B型暖风机的售价和购进量,并表示12月上旬的销售额,根据比(1)问中最低销售额增加了建立方程求解.

解:(1)设购进型暖风机台,则B台,由题意得

解得:

答:至少购进型暖风机400台.

2)由题意得

,化简得:

解得(舍),,即

的值为12.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在的角平分线.若在边上截取,连接,则图中等腰三角形共有(

A.3B.5C.6D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

1)这次活动共调查了多少人;

2)将条形统计图补充完整;

3)在一次购物中,小明和小亮都想从微信支付宝银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,DBA=60°,求该段运河的河宽(即CH的长).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形中,是对角线,点在线段上,连结,将沿翻折,使得点的对应点恰好落在上,点在射线上,连接,将沿翻折,使得点的对应点恰好落在所在直线,则线段的长度为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB x轴上 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,点E在弦AB所对的优弧上,且为半圆,C上的动点,连接CACB,已知AB4cm,设BC间的距离为xcm,点C到弦AB所在直线的距离为y1cmAC两点间的距离为y2cm

小明根据学习函数的经验,分别对函数y1y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.

1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1y2x的几组对应值:

x/cm

0

1

2

3

4

5

6

y1/cm

0

0.78

1.76

2.85

3.98

4.95

4.47

y2/cm

4

4.69

5.26

5.96

5.94

4.47

2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(xy1),(xy2),并画出函数y1y2的图象;

3)结合函数图象,解决问题:

连接BE,则BE的长约为   cm

当以ABC为顶点组成的三角形是直角三角形时,BCspan>的长度约为   cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:

(1) 理解

填空:如图1,在四边形ABCD中,若     (填一种情况),则四边形ABCD是“准菱形”;

(2)应用

证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)

(3) 拓展

如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形中,的中点,将沿翻折得到,延长,垂足为,连接.结论:;②;③;④;⑤.其中的正确的个数是(

A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案