分析 根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出AF=AE,就可以得出结论.
解答 证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∵在△BAF和△DAE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABF=∠ADE}\\{BF=DE}\end{array}\right.$,
∴△BAF≌△DAE(SAS),
∴AF=AE,∠FAB=∠EAD,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
∴△AEF是等腰直角三角形.
点评 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,等腰直角三角形的判定,在解答本题时,证明三角形全等是关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com