精英家教网 > 初中数学 > 题目详情
3.已知:y与x+2成正比例,且x=1时,y=-6.
(1)求y与x之间的函数关系式;
(2)若点M(m,4)在这个函数的图象上,求点M的坐标.

分析 (1)根据题意设出函数解析式,把当x=1时,y=-6代入解析式,便可求出未知数的值,从而求出其解析式;
(2)将点M(m,4)代入函数的解析式中,即可求得m的值.

解答 解:(1)根据题意:设y=k(x+2),
把x=1,y=-6代入得:-6=k(1+2),
解得:k=-2.
则y与x函数关系式为y=-2(x+2),
即y=-2x-4;

(2)把点M(m,4)代入y=-2x-4,
得:4=-2m-4,
解得m=-4,
所以点M的坐标是(-4,4).

点评 本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,阳光下斜坡旁有一棵树AB,它的阴影投在斜坡上为AC=10米,斜坡与平面形成的坡角∠DAC=15°,光线与斜坡形成的∠BCA=75°.求树AB的高度(精确到0.1米,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,$\sqrt{3}$≈1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:
(1)x2-25=0
(2)(x-1)2=16.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.考查下列命题:
①-4>-2;②若a=b,则a2=b2;③同角的余角相等;④两直线平行,同位角相等
其中,真命题有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.问题探究:
(1)已知:如图1,在正方形ABCD中,点E、H分别在BC、AB上,若AE⊥DH于点O,求证AE=DH;
类比探究:
(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;
拓展应用:
(3)已知,如图3,在(2)问条件下,若BC=4,E为BC的中点,AF=$\frac{1}{4}$AD,求HG的长

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若m2=100,|$\frac{-n}{3}$|=1,则m+$\sqrt{{n}^{2}}$=13或-7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:$\frac{1}{2a-4}$$÷(a+2-\frac{5a}{a-2})$,其中a是方程x2-5x-6=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,矩形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程组$\left\{\begin{array}{l}{2x-y=5①}\\{3x+y=7②}\end{array}\right.$.

查看答案和解析>>

同步练习册答案