精英家教网 > 初中数学 > 题目详情

直线y=ax-2和直线y=bx+1的图象交于x轴上同一点,则a:b的值是


  1. A.
    -2
  2. B.
    2
  3. C.
    1
  4. D.
    -1
A
分析:分别把y=0代入y=ax-2和y=bx+1,则可得到两直线与x轴交点的横坐标,然后令它们相等,即可得到a:b的值.
解答:把y=0代入y=ax-2得ax-2=0解得x=;把y=0代入y=bx+1得bx+1=0解得x=-
∵直线y=ax-2和直线y=bx+1的图象交于x轴上同一点,
=-
∴a:b=-2.
故选A.
点评:本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2.
(1)P是OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿线段OB方向运动,直到点P与点B重合,设OP=x,正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与x的函数关系式;
(2)在(1)中,当x分别取1和3时,y的值分别是多少?
(3)已知直线l:y=ax-a经过一定点A,求经过定点A且把矩形OBCD的面积平均分成两部分的直线l的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2.
(1)P是OB上一个动点,动点 Q在 PB或其延长线上运动,OP=PQ,作以 PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,直到点P与点B重合,设OP=x,正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与x的函数关系式;
(2)在(1)中,当x分别取1和3时,y的值分别是多少?
(3)已知直线l:y=ax-a都经过一定点A,求经过定点A且把矩形OBCD面积平均分成两部分的直线的关系式和A点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2.
(1)P是OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿线段OB方向运动,直到点P与点B重合,设OP=x,正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与x的函数关系式;
(2)在(1)中,当x分别取1和3时,y的值分别是多少?
(3)已知直线l:y=ax-a经过一定点A,求经过定点A且把矩形OBCD的面积平均分成两部分的直线l的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省南通市一中中考数学三模试卷(解析版) 题型:解答题

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2.
(1)P是OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿线段OB方向运动,直到点P与点B重合,设OP=x,正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与x的函数关系式;
(2)在(1)中,当x分别取1和3时,y的值分别是多少?
(3)已知直线l:y=ax-a经过一定点A,求经过定点A且把矩形OBCD的面积平均分成两部分的直线l的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省南京市江宁区中考数学一模试卷(解析版) 题型:解答题

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2.
(1)P是OB上一个动点,动点 Q在 PB或其延长线上运动,OP=PQ,作以 PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,直到点P与点B重合,设OP=x,正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与x的函数关系式;
(2)在(1)中,当x分别取1和3时,y的值分别是多少?
(3)已知直线l:y=ax-a都经过一定点A,求经过定点A且把矩形OBCD面积平均分成两部分的直线的关系式和A点的坐标.

查看答案和解析>>

同步练习册答案