精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

【答案】(1)证明见解析;(2)ED=EB,证明见解析;(3)CG=2.

【解析】

试题(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=30°,从而得出DE=BE;(2)、AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(3)、AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.

试题解析:(1)、证明:∵△CDE是等边三角形, ∴∠CED=60°, ∴∠EDB=60°﹣B=30°,

∴∠EDB=B, DE=EB;

(2)、解:ED=EB, 理由如下:取AB的中点O,连接CO、EO,

∵∠ACB=90°,ABC=30°, ∴∠A=60°,OC=OA, ∴△ACO为等边三角形, CA=CO,

∵△CDE是等边三角形, ∴∠ACD=OCE,∴△ACD≌△OCE, ∴∠COE=A=60°,∴∠BOE=60°, ∴△COE≌△BOE,EC=EB,ED=EB;

(3)、AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,

∴∠COE=A=60°,∴∠BOE=60°,COE≌△BOE,EC=EB,ED=EB, EHAB,

DH=BH=3,GEAB, ∴∠G=180°﹣A=120°, ∴△CEG≌△DCO, CG=OD,

CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+3+3, 解得,a=2,

CG=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l的解析式为y=﹣x+b,它与坐标轴分别交于A、B两点,其中点B坐标为(0,4).

(1)求出A点的坐标;

(2)在第一象限的角平分线上是否存在点Q使得∠QBA=90°?若存在,求点Q的坐标;若不存在,请说明理由.

(3)动点Cy轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C运动所有的时间t,使得△ABC为轴对称图形(直接写答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了微商,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤

星期

与计划量的差值

(1)根据记录的数据可知前三天共卖出 ______ 斤;

(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;

(3)本周实际销售总量达到了计划数量没有?

(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣2x的图象与二次函数y=﹣x2+3x图象的对称轴交于点B.

(1)写出点B的坐标
(2)已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年俄罗斯世界杯组委会对世界杯比赛用球进行抽查,随机抽取了100个足球,检测每个足球的质量是否符合标准,超过或不足部分分别用正、负数来表示,记录如表:

与标准质量的差值(单位:克)

﹣4

﹣2

0

1

3

6

个数

10

13

30

25

15

7

(1)平均每个足球的质量比标准质量多还是少?用你学过的方法合理解释;

(2)若每个足球标准质量为420克,则抽样检测的足球的总质量是多少克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段统计如下:

学业考试体育成绩(分数段)统计表

分数段

人数(人)

频率

A

48

0.2

B

a

0.25

C

84

0.35

D

36

b

E

12

0.05

分数段为:(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)

根据上面提供的信息,回答下列问题:
(1)在统计表中,a的值为 , b的值为
(2)将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);
(3)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)
(4)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图,在五边形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求证:ABC≌△AED;

(2)当B=140°时,求BAE的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠E=50°,BAC=50°,D=110°,求∠ABD的度数.

请完善解答过程,并在括号内填写相应的理论依据.

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代换)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列各式:定义一种新运算”:

13=1×4+3=7,3﹣1=3×4﹣1=11,54=5×4+4=24

4(﹣3)=4×4﹣3=13,(﹣2)(﹣5)=(﹣2)×4﹣5=﹣13,……

(1)写出一般结论:ab=_____

(2)如果a≠b,那么ab_____ba(“=”“≠”)

(3)先化简,再求值:(a﹣b)⊙(2a+3b).其中a=﹣,b=2019.

查看答案和解析>>

同步练习册答案