分析 根据等腰直角三角形的斜边长为直角边长度的$\sqrt{2}$倍,可以发现n个△,直角边是第(n-1)个△的斜边长,即可求出斜边长.
解答 解:等腰直角三角形一个直角边为1,
等腰直角三角形的斜边长为直角边长度的$\sqrt{2}$倍,
第一个△的斜边长:1×$\sqrt{2}$=$\sqrt{2}$,
第二个△直角边是第一个△的斜边长,所以它的斜边长:$\sqrt{2}×\sqrt{2}$=${(\sqrt{2})}^{2}$,
…
第n个△,直角边是第(n-1)个△的斜边长,其斜边长为:${(\sqrt{2})}^{n}$,
则第2015个等腰直角三角形的斜边长是:${(\sqrt{2})}^{2015}$.
故答案为:${(\sqrt{2})}^{2015}$.
点评 此题主要考查学生对等腰直角三角形的理解和掌握,解答此题的关键是通过认真分析,根据等腰直角三角形的斜边长为直角边长度的$\sqrt{2}$倍,从中发现规律.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
分数 | 50 | 60 | 70 | 80 | 90 | 100 |
人数 | 1 | 2 | 8 | 13 | 14 | 4 |
A. | 70,80 | B. | 70,90 | C. | 80,90 | D. | 90,100 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com