精英家教网 > 初中数学 > 题目详情
已知抛物线>0)的对称轴为直线,且经过点(-3,),(4,),试比较的大小:    (填“>”,“<”或“=”).
=.

试题分析:由于点(-3,)和(4,)到直线的距离相等,所以=.
考点: 二次函数的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).

(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点)。已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).

(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?S最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,直线L与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求抛物线的解析式及直线AC的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象的顶点坐标是(    )
A.(-1,3)B.(-1,-3)C.(1,-3)D.(1,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直线y=b(b为实数)与函数 y= 的图像至少有三个公共点,则实数b的取值范围             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数的图象如图所示,则下列结论中:①;②;③;④.正确的是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点E、F在抛物线的对称轴的同侧 (点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD与x轴、直线y=2ax+b所围成图形的面积,.则S与的数量关系式为:S=              

 

查看答案和解析>>

同步练习册答案