精英家教网 > 初中数学 > 题目详情
13.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=$\sqrt{3}$,以O为圆心,OC为半径作$\widehat{CE}$,交OB于E点.
(1)求⊙O的半径OA的长;
(2)计算阴影部分的面积.

分析 (1)首先证明OA⊥DF,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.
(2)根据S=S△CDO+S扇形OBD-S扇形OCE计算即可.

解答 解;(1)连接OD,

∵OA⊥OB,
∴∠AOB=90°,
∵CD∥OB,
∴∠OCD=90°,
在RT△OCD中,∵C是AO中点,CD=$\sqrt{3}$,
∴OD=2CO,设OC=x,
∴x2+($\sqrt{3}$)2=(2x)2
∴x=1,
∴OD=2,
∴⊙O的半径为2.
(2)∵sin∠CDO=$\frac{CO}{OD}$=$\frac{1}{2}$,
∴∠CDO=30°,
∵FD∥OB,
∴∠DOB=∠ODC=30°,
∴S=S△CDO+S扇形OBD-S扇形OCE
=$\frac{1}{2}$×$1×\sqrt{3}$+$\frac{30π×{2}^{2}}{360}$-$\frac{90π•{1}^{2}}{360}$
=$\frac{\sqrt{3}}{2}$+$\frac{π}{12}$.

点评 本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.下列运算正确的是(  )
A.3a3+4a3=7a6B.3a2-4a2=-a2C.3a2•4a3=12a3D.(3a32+4a3=$\frac{3}{4}$a2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.把函数y=x2+bx+c的图象向左平移2个单位再向上平移3个单位,所得图象的解析式为y=x2+2x+3,则b、c的值为(  )
A.b=2,c=0B.b=2,c=-2C.b=-2,c=-1D.b=-2,c=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某通讯运营商的手机上网流量资费标准推出了三种优惠方案:
方案A:按流量计费,0.1元/M;
方案B:20元流量套餐包月,包含500M流量,如果超过500M,超过部分按流量计费,如果用到1000M时,超过1000M的流量不再收费;
方案C:120元包月,无限制使用.
用x表示每月上网流量(单位:M),y表示每月的流量费用(单位:元),方案B和方案C对应的y关于x的函数图象如图所示,请解决以下问题:
(1)写出方案A的函数解析式,并在图中画出其图象;
(2)直接写出方案B的函数解析式;
(3)根据三种优惠方案,结合每月的上网流量数,请你给出经济合理的选择方案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若|x-2y|+$\sqrt{y+2}$=0,则xy=(  )
A.-4B.2C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,BC为半径的圆交x轴于M、N两点(M在N的左侧).

(1)求此二次函数的表达式;
(2)当点C与点A重合时,求此时点M、N的坐标;
(3)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.2-(-1)=(  )
A.1B.2C.-3D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知a,b是方程x2+2013x+1=0的两个根,则(1+2015a+a2)(1+2015b+b2)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读理解:
我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把$\frac{1}{sinα}$的值叫做这个平行四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是$\frac{2\sqrt{3}}{3}$.
猜想证明:
(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,$\frac{1}{sinα}$之间的数量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4$\sqrt{m}$(m>0),平行四边形A1B1C1D1的面积为2$\sqrt{m}$(m>0),试求∠A1E1B1+∠A1D1B1的度数.

查看答案和解析>>

同步练习册答案