精英家教网 > 初中数学 > 题目详情
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,AC=12厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒是k厘米;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求k的值和y2与x的函数关系;
(3)在图2中,设y1与y2的图象的交点为M,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别与y1、y2精英家教网图象交于点E、F.求△OMF面积的最大值.
①说出线段EF的长在图1中所表示的实际意义;
②求△OMF面积的最大值.
分析:(1)直接根据三角形的面积公式可得y1=
3
2
x;
(2)先设y2=
1
2
x(12-kx)=-
k
2
x2+6x,把x=12时,y2=12代入解析式可求得k=
3
2
,即y2=-
3
4
x2+6x;
(3)①线段是长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ的面积),由
3
2
x=-
3
4
x2+6x得点M(6,9),过点M做MH⊥EF于点H,则S△OMF=S△OEF+S△MEF=3EF=3(-
3
4
x2+6x-
3
2
x)=-
9
4
(x-3)2+
81
4
,所以当x=3时,△OMF的面积有最大值为
81
4
解答:精英家教网解:(1)y1=
3
2
x
画图正确(2分)

(2)y2=
1
2
x(12-kx)=-
k
2
x2+6x   (4分)
由题设:当x=4时,y2=12,
所以-8k+24=12,
解得k=
3
2
(5分)
从而y2=-
3
4
x2+6x   (6分)

(3)①线段是长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ的面积)(7分)
②解法一:由
3
2
x=-
3
4
x2+6x
得点M(6,9)精英家教网
过点M做MH⊥EF于点H,则S△OMF=S△OEF+S△MEF=
1
2
EF.
OG+
1
2
EF.MH=
1
2
EF×6=3EF(9分)
=3(-
3
4
x2+6x-
3
2
x)=-
9
4
(x-3)2+
81
4
(10分)
所以当x=3时,△OMF的面积有最大值为
81
4
(12分)
解法二:由
3
2
x=-
3
4
x2+6x得点M(6,9)
过点M做MH⊥x轴于点N,则
S△OMF=S四边形ONMF-S△ONM=S△OGF+S梯形FGNM-S△ONM(9分)
=-
9
4
x2+
27
2
x   (10分)
所以当x=3时,△OMF的面积有最大值为
81
4
.(12分)
点评:本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要利用三角形的性质和二次函数的性质把数与形有机的结合在一起,利用图形间的“和差“关系求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
精英家教网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,抛物线y=
1
4
x2-6
与直线y=
1
2
x
相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:
1
a2
+
1
b2
=
1
h2

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠ACB=90°,分别以AB、AC为底边向△ABC的外侧作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.试探究线段FD、FE的数量关系,并加以证明.
说明:如果你经历反复探索,没有找到解决问题的方法,可以从图2、3中选取一个,并分别补充条件∠CAB=45°、∠CAB=30°后,再完成你的证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,AB=AC=3,BD为AC边的中线,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教网
(1)求AA1的长;
(2)如图2,在Rt△A1B1C中按上述操作,则AA2的长为
 

(3)在Rt△A2B2C中按上述操作,则AA3的长为
 

(4)一直按上述操作得到Rt△An-1Bn-1C,则AAn的长为
 

查看答案和解析>>

同步练习册答案