已知:如图,抛物线()与轴交于点( 0,4) ,与轴交于点,,点的坐标为(4,0).
(1) 求该抛物线的解析式;
(2) 点是线段上的动点,过点作∥,交于点,连接. 当的面积最大时,求点的坐标;
(3)若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为(2,0). 问: 是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
(1);(2)(1,0);(3)(,3)或(,3)或(,2)或(,2)
【解析】
试题分析:(1)由抛物线与轴交于点(0,4),与轴交于点(4,0)根据待定系数法即可求得结果;
(2)先求得抛物线与x轴的交点坐标,根据勾股定理可得,,,设,的面积用表示,由∥可得, 即,即可表示出CE的长,过点作,垂足为,在Rt中求得∠B的正弦函数,在Rt中即可表示出QM的长,从而可以表示出y关于x的函数关系式,再根据二次函数的性质即可求得结果;
(3)分为底边、为腰且为顶角、为腰且为顶角三种情况分析即可.
(1)∵抛物线()与轴交于点(0,4),与轴交于点(4,0)
∴,解得
∴该抛物线的解析式为;
(2)令,则,解得,
∴
∴,,
设,的面积用表示,
∵∥
∴ ,即
∴
过点作,垂足为
在Rt中,
在Rt中,
∴
∴当时,的面积最大是3,即点的坐标为(1,0);
(3)①当为底边时,点的横坐标是1,又点在直线上,直线的解析式为,所以点的坐标是(1,3),所以点的纵坐标为3,代入,得点的坐标为(,3)或(,3)
②当为腰,为顶角时,此时点是以点为圆心,为半径的圆与直线的交点,有两个点,点(4,0)与点重合,舍去,点(2,2),所以点的纵坐标为2,,代入,得点的坐标为(,2)或(,2)
③当为腰,为顶角时,此时点应是以点为圆心,为半径的圆与直线的交点,但是点到的距离为,所以不存在满足条件的点.
考点:二次函数的综合题
点评:本题知识点较多,综合性强,难度较大,一般是中考压轴题,需要学生熟练掌握二次函数的性质的应用.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
| ||
2 |
5 |
6 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com