精英家教网 > 初中数学 > 题目详情
(2004•南京)如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD为矩形;
(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.
【答案】分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;
(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.
解答:解:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).
答:t为4时,四边形APQD为矩形;

(2)当PQ=4时,⊙P与⊙Q外切.
①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);
②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;
③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得
④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,
解得
∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而
∴当t为4s,时,⊙P与⊙Q外切.
点评:考虑两圆外切时,要注意两圆的圆心距等于两圆的半径之和,大于的话就说明外离,小于的话就说明相交;还有要注意求出的t的值不能超过两点运动到D点的最小值,否则就不存在.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2004•南京)如图,AB⊥BC,DC⊥BC,垂足分别为B、C.
(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由;
(2)设AB=a,DC=b,AD=c,那么当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省南京市中考数学试卷(解析版) 题型:填空题

(2004•南京)如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=    cm.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省南京市中考数学试卷(解析版) 题型:选择题

(2004•南京)如图,A,B是⊙O上的两点,AC是⊙O的切线,∠B=70°,则∠BAC等于( )

A.70°
B.35°
C.20°
D.10°

查看答案和解析>>

科目:初中数学 来源:2004年贵州省贵阳市乌当区第二中学中考题型试卷(解析版) 题型:选择题

(2004•南京)如图所示,边长为12m的正方形池塘的周围是草地,池塘边A,B,C,D处各有一棵树,且AB=BC=CD=3m,现用长4m的绳子将羊拴在一棵树上,为了使在草地上活动区域的面积最大,应将绳子拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在( )

A.A处
B.B处
C.C处
D.D处

查看答案和解析>>

同步练习册答案