精英家教网 > 初中数学 > 题目详情
18、如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.求证:四边形DBCF是平行四边形.
分析:根据旋转的性质可以得到DF=2DE,根据中位线定理可得:BC=2DE,BC∥DE,则DF=BC,且DF∥BC,即可证明.
解答:证明:∵△ADE绕着点E顺时针旋转180°得到△CFE(1分)
∴点D、E、F在一条直线上,且DF=2DE(3分)
∵点D,E分别是AB,AC边的中点
∴DE是△ABC的中位线(5分)
∴BC=2DE,且BC∥DE(7分)
∴DF∥BC
∴四边形DBCF是平行四边形(9分)
点评:本题主要考查了平行四边形的判定以及三角形的中位线定理,正确理解中位线定理以及旋转的性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案