精英家教网 > 初中数学 > 题目详情
13.若m、n互为相反数,则(3m2(32n=1.

分析 根据m、n互为相反数,可得:m+n=0,再根据幂的乘方和积的乘方的运算方法,求出(3m2(32n的值是多少即可.

解答 解:∵m、n互为相反数,
∴m+n=0,
∴(3m2(32n
=32m•32n
=32m+2n
=30
=1
故答案为:1.

点评 此题主要考查了幂的乘方和积的乘方,相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①(amn=amn(m,n是正整数);②(ab)n=anbn(n是正整数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在5×5的正方形网格中,每个小正方形的边长都是1个单位长度,线段AB的顶点在格点(小正方形的顶点)上.
(1)在网格中画出?ABCD,使得?ABCD的面积为3.(画出一种即可)
(2)将?ABCD绕点B至少逆时针旋转90度,能使旋转后的四边形的顶点再次都落在格点上,试在图中画出旋转后的四边形BEFG(点E与点C对应).(画出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号分组频数
6≤m<72
7≤m<87
8≤m<9a
9≤m≤102
(1)求a的值;
(2)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,一次函数y=-x+3的图象与反比例y=$\frac{k}{x}$(k为常数,且k≠0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知a、b、c满足$\sqrt{a+b-4}$+|a-c+1|=$\sqrt{b-c}$+$\sqrt{c-b}$,求a+b+c的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.爸爸为了检查小明对平行线的条件与性质这部分知识的掌握情况,给他出了一道题:如图,AB∥DE,∠B=80°,CM平分∠BCD,CN⊥CM,求∠NCE的度数.小明稍加思索,就做出来了,你知道他是怎样解的吗?请把你的推理过程写下来吧.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)(-3)2-$\sqrt{4}$+($\frac{1}{2}$)-1
(2)(x+1)2-2(x-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.
已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.
求证:CD=$\frac{1}{2}$AB.
证法1:如图2,在∠ACB的内部作∠BCE=∠B,
CE与AB相交于点E.
∵∠BCE=∠B,
∴①.
∵∠BCE+∠ACE=90°,
∴∠B+∠ACE=90°.
又∵②,
∴∠ACE=∠A.
∴EA=EC.
∴EA=EB=EC,
即CE是斜边AB上的中线,且CE=$\frac{1}{2}$AB.
又∵CD是斜边AB上的中线,即CD与CE重合,
∴CD=$\frac{1}{2}$AB.
请把证法1补充完整,并用不同的方法完成证法2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.化简或计算下列各式
(1)(-1)2017-(3.14-π)0+(-$\frac{1}{2}$)-2
(2)5x(x2-2x-1)-x2(x-6)
(3)(a+2b)(a-2b)-$\frac{1}{2}$b(a-8b)

查看答案和解析>>

同步练习册答案