【题目】如图,正方形的对角线,相交于点.
(1) (2)
(1)若点是上一点,连接,过点作,垂足为,与相交于点.求证:;
(2)若点在的延长线上,于点,交的延长线于点,其他条件不变结论“”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,反比例函数(k<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到了点B’在此反比例函数的图象上,则t的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需时间与原计划生产 450 台机器所需时间相同.
(1)现在平均每天生产多少台机器;
(2)生产 3000 台机器,现在比原计划提前几天完成.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”。小明参加了该项赛事的志愿者服务工作, 组委会随机将志愿者分配到两个项目组.
(1)小明被分配到“半程马拉松”项目组的概率为________.
(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:
调查总人数 | 20 | 50 | 100 | 200 | 500 |
参加“半程马拉松”人数 | 15 | 33 | 72 | 139 | 356 |
参加“半程马拉松”频率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)
②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:在等腰直角三角形ABC中,, 直线过点且,过点为一锐角顶点作,且点在直线上(不与点重合),如图1, 与交于点,试判断与的数量关系,并说明理由.探究展示:小星同学展示出如下正确的解法:
解:,证明如下:
过点作,交于点
则为等腰直角三角形
(依据)
在与中
(依据)
(1)反思交流:上述证明过程中的“依据”和“依据”分别是指:
依据:
依据:
拓展延伸:(2)在图2中,与延长线交于点,试判断与的数量关系,并写出证明过程
(3)在图3中,与延长线交于点,试判断与的数量关系,并写出证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.
(1)该顾客最少可得_________元购物券,最多可得_________元购物券;
(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数和.
(1)在同一直角坐标系内,画出这两个函数的大致图象;
(2)直接写出:①函数与坐标轴围成的图形的面积为_______;
②函数与坐标轴围成的图形的面积为________;
③这两个函数图象与轴围成的图形的面积为_________.
(3)若反比例函数经过这两个函数图象的交点,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点, 在反比例函数(m为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点,过点C作CE∥x轴交直线l于点E.
(1)求m的值,并求直线l对应的函数解析式;
(2)求点E的坐标;
(3)过点B作射线BN∥x轴,与AE交于点M (补全图形),求证:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.
(1)求证:BD=EC;
(2)求∠BAO的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com