精英家教网 > 初中数学 > 题目详情

【题目】如图,为了测量出楼房AC的高度,从距离楼底C60米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53,求楼房AC的高度(参考数据:sin53=, cos53=, tan53= ≈1.732,结果精确到0.1米)

【答案】118.9

【解析】试题分析:如图作BNCDNBMACM,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.

解:如图作BN⊥CDNBM⊥ACM

RtBDN中,BD=30BNND=1

BN=15DN=15

∵∠C=∠CMB=∠CNB=90°

四边形CMBN是矩形,

CM=BN=15BM=CN=60-15=45

Rt△ABM中,tan∠ABM=AMBM=43

AM=60

AC=AM+CM=15+60≈118.9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.

【1】如图1,损矩形ABCD,ABC=ADC=90°,则该损矩形的直径是线段 .

【1】在线段AC上确定一点P使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由. 友情提醒:尺规作图不要求写作法,但要保留作图痕迹.

【1】如图2ABC中,ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由. 若此时AB=3,BD=,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD平分∠ACB,∠1=2

1)求证:DEAC

2)若∠3=30°,∠B=25°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取ADBC的中点EF,连接EFDF,作∠DFC,的平分线,交AD的延长线于点H,作HGBC,交I3C的延长线于点G,则下列矩形是黄金矩形的是( )

A. 矩形ABFE B. 矩形EFCD C. 矩形EFGH D. 矩形DCGH

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象与坐标轴分别交于AB点,AE平分,交轴于点E

1)直接写出点A和点B的坐标.

2)求直线AE的表达式.

3)过点BBFAE于点F,过点F分别作FD//OAAB于点DFC//AB轴于点C,判断四边形ACFD的形状并说明理由,求四边形ACFD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;

(2)求抛物线的顶点坐标和对称轴;

(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数的图像交与两点,过点A轴于点C,过点B轴于点D,连接AO得出以下结论:

①点A和点B关于直线对称;

②当时,

④当时,都随x的增大而增大.

其中正确的是

A.①②③B.②③C.①③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BCx轴,交y轴于点C,动点P从坐标原点O出发,沿OABC(图中“→”所示路线)匀速运动,终点为C,过P作PMx轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为(

查看答案和解析>>

同步练习册答案