精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.
(1)求证:
(2)若sinC=,DF=6,求⊙O的半径.
(1)证明见解析;(2)

试题分析:(1)一方面由切线的性质和平行的性质得到∠ADC=∠F四边形2另一方面由圆周角定理得∠ABC=∠ADC,从而证得∠ABC=∠F.
(2)连接BD,根据直径所对的圆周角为直角得到∠ADB=90°,根据切线的性质得到∠ABF=90°,利用锐角三角函数定义,在Rt△DBF中,由,DF=6求得BD=8;在Rt△ABD中,由求得,即可得到⊙O的半径.
试题解析:(1)∵BF为⊙O的切线,∴AB⊥BF于点B.
∵ CD⊥AB,∴∠ABF =∠AHD =90°.
∴CD∥BF.∴∠ADC=∠F.
又∵∠ABC=∠ADC,∴∠ABC=∠F.
(2)如图,连接BD.
∵AB为⊙O的直径,∴∠ADB =90°.
由(1)∠ABF =90°,∴∠A=∠DBF.
又∵∠A=∠C,∴∠C=∠DBF.
在Rt△DBF中,,DF=6,∴BD=8.
在Rt△ABD中,,∴.∴⊙O的半径为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB=,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED与弧CAD围成的新月形的面积S.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果半径分别为2cm和3cm的两圆外切,那么这两个圆的圆心距是
A.1cmB.5cmC.1cm或5cmD.小于1cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的弦,OC⊥AB于点D,交⊙O于点C,若半径为5,OD=3,则弦AB的长为
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案