精英家教网 > 初中数学 > 题目详情

如图,E和D分别在△ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,若∠B=70°,∠D=40°,则∠F的大小是________.

55°
分析:由CF、EF分别平分∠ACB和∠AED,得∠3=∠4,∠1=∠2,所以有∠3+∠B=∠2+∠F;∠3+∠4+∠B=∠1+∠2+∠D,即2∠3+∠B=2∠2+∠D,而∠B=70°,∠D=40°,于是由两个等式即可求出∠F.
解答:解:如图,
∵CF、EF分别平分∠ACB和∠AED,
∴∠3=∠4,∠1=∠2,
而∠3+∠B=∠2+∠F;
∠3+∠4+∠B=∠1+∠2+∠D,即2∠3+∠B=2∠2+∠D,
又∵∠B=70°,∠D=40°,
∴∠3+70°=∠2+∠F①,
2∠3+70°=2∠2+40°②,
①×2-②得,70°=2∠F-40°,
解得∠F=55°.
故答案为55°.
点评:本题考查了三角形的内角和定理:三角形的内角和为180°.同时考查了角平分线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,E和D分别在△ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,若∠B=70°,∠D=40°,则∠F的大小是
55°

查看答案和解析>>

科目:初中数学 来源: 题型:

28、如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你填上根据.
小华是这样想的:因为CF和BE相交于点O,
根据
对顶角相等
得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据
两边对应相等且夹角相等的两三角形全等
得出△COB≌△FOE,
根据
全等三角形对应边相等
得出BC=EF,
根据
全等三角形对应角相等
得出∠BCO=∠F,
既然∠BCO=∠F根据
内错角相等,两直线平行
、得出AB∥DF,
既然AB∥DF,根据
两直线平行,同旁内角互补
.得出∠ACE和∠DEC互补.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省江都大桥初中八年级下学期开学考试数学试卷(带解析) 题型:解答题

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

同步练习册答案