精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中∠C=90°,∠A=30°,作AB的垂直平分线,交AB于D点,交AC于E点,连接BE,求证:BE平分∠ABC.

证明:∵△ABC中∠C=90°,∠A=30°,
∴∠ABC=60°,
∵AB的垂直平分线,交AB于D点,交AC于E点,
∴AE=BE,
∴∠A=∠EBA=30°,
∴∠CBE=∠CBA-∠ABE=60°-30°=30°,
∴∠CBE=∠ABE
∴BE平分∠ABC.
分析:首先利用直角三角形的性质求得∠ABC的度数,然后利用线段的垂直平分线的性质得到∠ABE的度数,从而问题得证.
点评:本题考查了线段的垂直平分线的性质,属于基础题,相对比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案