精英家教网 > 初中数学 > 题目详情

【题目】已知正方形ABCD,点P是对角线AC所在直线上的动点,点EDC边所在直线上,且随着点P的运动而运动,PE=PD总成立。

(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PEPB有怎样的关系?(直接写出结论不必证明)

(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;

(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PEPB有怎样的关系?(直接写出结论不必证明)

【答案】1)①PE=PB,②PEPB;(2)成立,理由见解析(3)①PE=PB,②PEPB.

【解析】

1)根据正方形的性质和全等三角形的判定定理可证PDCPBC,推出PB=PD=PE,∠PDE=180°PBC=PED,求出∠PEC+PBC=180°,求出∠EPB的度数即可

2)证明方法同(1),可得PE=PBPEPB

3)证明方法同(1),可得PE=PBPEPB

(1)PE=PB,②PEPB.

(2)(1)中的结论成立。

①∵四边形ABCD是正方形,AC为对角线,

CD=CB,∠ACD=ACB

PC=PC

∴△PDC≌△PBC

PD=PB

PE=PD

PE=PB

②:由①,得△PDC≌△PBC

∴∠PDC=PBC.

又∵PE=PD

∴∠PDE=PED.

∴∠PDE+PDC=PEC+PBC=180°

∴∠EPB=360°(PEC+PBC+DCB)=90°

PEPB.

(3)如图所示:

结论:①PE=PB,②PEPB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,规定:抛物线y=a(xh) +k的关联直线为y=a(xh)+k.

例如:抛物线y=2(x+1) 3的关联直线为y=2(x+1)3,即y=2x1.

(1)如图,对于抛物线y=(x1) +3.

①该抛物线的顶点坐标为___,关联直线为___,该抛物线与其关联直线的交点坐标为______

②点P是抛物线y=(x1) +3上一点,过点P的直线PQ垂直于x,交抛物线y=(x1) +3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当dm的增大而减小时,dm之间的函数关系式,并写出自变量m的取值范围。

(2)顶点在第一象限的抛物线y=a(x1) +4a与其关联直线交于点A,B(A在点B的左侧),与x轴负半轴交于点C,直线ABx轴交于点D,连结ACBC.

①求△BCD的面积(用含a的代数式表示).

②当△ABC为钝角三角形时,直接写出a的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15AB=9.

求:(1)FC的长;(2)EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的边OAOC在坐标轴上,矩形CDEF的边CDCB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y= (k>0)的图象经过点B,E,则点E的坐标是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AM是中线,AD是高线.

1)若ABAC4 cm,则△ABM的周长比△ACM的周长多__________ cm

2)若△AMC的面积为12 cm2,则△ABC的面积为__________cm 2

3)若AD又是△AMC的角平分线,∠AMB=130°,求∠ACB的度数.(写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).

(1)体育所占的百分比是_______,选择其他的人数是________

(2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率;

(3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数的图象与函数的图象交于点.

(1)求函数的表达式;

(2)观察图象,直接写出不等式的解集;

(3)若点轴上的动点,当周长最小时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案