精英家教网 > 初中数学 > 题目详情
5.观察下列各式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

(1)根据上面各式的规律可得:(x-1)(xn+xn-1+…+x+1)=xn+1-1(其中n是正整数)
(2)运用以上规律:计算:1+2+22+23+…+210的值.

分析 (1)根据题目给出的几个式子可总结出规律;
(2)将原式化为(2-1)(210+29+28+…+2+1),继而运用公式计算即可.

解答 解:(1)根据以上规律,可得(x-1)(xn+xn-1+…+x+1)=xn+1-1,
故答案为:xn+1-1;

(2原式=(2-1)(210+29+28+…+2+1)=211-1.

点评 本题主要考查数字的变化规律,弄清题中的规律是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.已知a2b=3+2$\sqrt{2}$,求$\frac{{a}^{3b}-{a}^{-3b}}{{a}^{b}-{a}^{-b}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:x3+px+q能被(x-a)2整除,求证:4p3+27q2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,AB=AC,高AD和BE相交于点H,且AH=2BD,求证:AE=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AE平分∠BAC交BC于点D,∠C=∠EBC,∠BAC=70°,∠ABC=30°,求∠E和∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在△ABC中,AB=10,AC=26,高AD=10,设能完全覆盖△ABC的圆的半径为R,则R的最小值是13.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若记y=f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,其中f(1)表示当x=1时y的值,即f(1)=$\frac{{1}^{2}}{1+{1}^{2}}$=$\frac{1}{2}$;
f($\frac{1}{2}$)表示当x=$\frac{1}{2}$时y的值,即f($\frac{1}{2}$)=$\frac{(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=$\frac{1}{5}$…;
则f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2016)+f($\frac{1}{2016}$)=2015.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.因式分解:9(m+n)2-(m-n)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.关于坐标系,下列说法正确的是(  )
A.建立坐标系,是为了定量地描述物体的位置及位置的变化
B.在建立坐标系时只需要确定正方向即可,与规定的正方向同向为正,与规定的正方向反向则为负
C.只能在水平方向建立直线坐标系
D.建立好直线坐标系后,可以用(x,y)表示物体的位置

查看答案和解析>>

同步练习册答案