精英家教网 > 初中数学 > 题目详情

【题目】如图,BFCE分别是钝角△ABC(∠ABC是钝角)中AC、AB边上的中线,又BF⊥CE,垂足是G,过点GGH⊥BC,垂足为H.

(1)求证:GH2=BHCH;

(2)若BC=20,并且点GBC的距离是6,则AB的长为多少?

【答案】(1)证明见解析(2)2

【解析】

(1)只要证明CGH∽△GBH即可解决问题;

(2)作EMCBCB的延长线于M.设CH=x,HB=y.构建方程组求出x、y,解直角三角形求出EM、BM即可.

(1)证明:∵CEBF,GHBC,

∴∠CGB=CHG=BHG=90°,

∴∠CGH+BGH=90°,BGH+GBH=90°,

∴∠CGH=GBH,

∴△CGH∽△GBH,

GH2=BHCH;

(2)解:作EMCBCB的延长线于M.设CH=x,HB=y.

则有,解得

∵∠ABC是钝角,

CH>BH,

CH=18,BH=2,

GABC的重心,∴CG=2EG,

GHBC,EMBC,

GHEM,

EM=9,CM=27,

BM=CM﹣BC=7,

BE=

AB=2BE=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.

(1)建立适当的平面直角坐标系,求抛物线的表达式;

(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.

(1)求出k,bm的值.

(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是 ________.

(3)P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.

(1)根据图像分别求出L1,L2的函数关系式.

(2)当照明时间为多少时,两种灯的费用相等?

(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AE⊥BD于点E,S矩形ABCD=40cm2,SABE:SDBA=1:5,则AE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人在相同条件下完成了10次射击训练,两人的成绩如图所示。

根据以上信息,整理分析数据如下:

平均成绩/

中位数/

方差/

______

7

1.2

7

______

______

1)完成表格;

2)根据训练成绩,你认为选派哪一名队员参赛更好?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=,AD=7,BC=8,tan∠B=,∠C=∠D,则线段CD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象与反比例函数的图象交于两点,且点的横坐标和点的纵坐标都是,求:

一次函数的解析式;(2)的面积.

根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,在ABC中,∠A是锐角,点DE分别在ABAC上,且∠DCB=∠EBCABECD相交于点O,探究BDCE之间的数量关系,并证明你的结论.

2)已知四边形ABCD,连接ACBD交于O,且满足条件:AB+CDAD+BCAB2+AD2BC2+DC2,请探究ACBD的关系,并说明理由.

查看答案和解析>>

同步练习册答案