16£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¶¥µãΪ£¨-4£¬1£©µÄÅ×ÎïÏß½»yÖáÓÚAµã£¬½»xÖáÓÚB¡¢CÁ½µã£¨µãBÔÚCµÄÓҲࣩ£¬ÒÑÖªAµã×ø±êΪ£¨0£¬-3£©£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¹ýµãB×÷Ï߶ÎABµÄ´¹Ïß½»Å×ÎïÏßÓÚµãD£¬Èç¹ûÒÔµãCΪԲÐĵÄÔ²ÓëÖ±ÏßBDÏàÇУ¬ÇëÅжÏÅ×ÎïÏߵĶԳÆÖálÓë¡ÑCÓÐÔõÑùµÄλÖùØϵ£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©ÒÑÖªµãPÊÇÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬ÇÒλÓÚA¡¢CÁ½µãÖ®¼ä£¬ÎÊ£ºµ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷PACµÄÃæ»ý×î´ó£¿²¢Çó³ö´ËʱPµãµÄ×ø±êºÍ¡÷PACµÄ×î´óÃæ»ý£®

·ÖÎö £¨1£©É趥µãʽy=a£¨x+4£©2+1£¬È»ºó°ÑAµã×ø±ê´úÈëÇó³öa¼´¿É£»
£¨2£©ÏÈÈ·¶¨C£¨-6£¬0£©£¬B£¨-2£¬0£©£¬A£¨0£¬-3£©£¬ÔÙ¼ÆËã³öAB=$\sqrt{13}$£¬×÷CF¡ÍBDÓÚD£¬Èçͼ£¬½Ó×ÅÖ¤Ã÷Rt¡÷BCF¡×Rt¡÷ABO£¬ÀûÓÃÏàËƱȼÆËã³öCF=$\frac{8\sqrt{13}}{13}$£¬È»ºó¼ÆËã³öµãCµ½Ö±ÏßlµÄ¾àÀ룬´Ó¶ø¿É¸ù¾ÝÖ±ÏßÓëÔ²µÄλÖùØϵµÄÅж¨·½·¨ÅжÏÅ×ÎïÏߵĶԳÆÖálÓë¡ÑCµÄλÖùØϵ£»
£¨3£©×÷PQ¡ÎyÖá½»ACÓÚQ£¬Èçͼ£¬ÏÈÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{1}{2}$x-3£¬ÉèP£¨t£¬-$\frac{1}{4}$t2-2t-3£©£¬ÔòQ£¨t£¬-$\frac{1}{2}$t-3£©£¬£¨-6£¼t£¼0£©£¬ÔòPQ=-$\frac{1}{4}$t2-$\frac{3}{2}$t=-$\frac{1}{4}$£¨t-3£©2+$\frac{9}{4}$£¬ÔÙÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½S¡÷PAC=-$\frac{3}{4}$£¨t-3£©2+$\frac{27}{4}$£¬È»ºóÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+4£©2+1
°ÑA£¨0£¬-3£©´úÈëµÃ16a+1=-3£¬½âµÃa=-$\frac{1}{4}$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=-$\frac{1}{4}$£¨x+4£©2+1£¬¼´y=-$\frac{1}{4}$x2-2x-3£»
£¨2£©Å×ÎïÏߵĶԳÆÖálÓë¡ÑCÏཻ£®ÀíÓÉÈçÏ£º
µ±y=0ʱ£¬-$\frac{1}{4}$£¨x+4£©2+1=0£¬½âµÃx1=-2£¬x2=-6£¬ÔòC£¨-6£¬0£©£¬B£¨-2£¬0£©£»£¬
µ±x=0ʱ£¬y=-$\frac{1}{4}$£¨x+4£©2+1=-3£¬ÔòA£¨0£¬-3£©£¬
¡àAB=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$£¬
×÷CF¡ÍBDÓÚD£¬Èçͼ£¬
¡ßAB¡ÍBD£¬
¡à¡ÏABO+¡ÏFBC=90¡ã£¬
¶ø¡ÏABO+¡ÏOAB=90¡ã£¬
¡à¡ÏFBC=¡ÏOAB£¬
¡àRt¡÷BCF¡×Rt¡÷ABO£¬
¡àCF£ºOB=BC£ºAB£¬¼´CF£º2=4£º$\sqrt{13}$£¬½âµÃCF=$\frac{8\sqrt{13}}{13}$£¬
¡ßÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=-4£¬
¡àµãCµ½Ö±ÏßlµÄ¾àÀëΪ-4-£¨-6£©=2£¬
¡ß$\frac{8\sqrt{13}}{13}$£¾2£¬
¡àÅ×ÎïÏߵĶԳÆÖálÓë¡ÑCÏཻ£»
£¨3£©×÷PQ¡ÎyÖá½»ACÓÚQ£¬Èçͼ£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬
°ÑC£¨-6£¬0£©£¬A£¨0£¬-3£©´úÈëµÃ$\left\{\begin{array}{l}{-6k+b=0}\\{b=-3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=-3}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{1}{2}$x-3£¬
ÉèP£¨t£¬-$\frac{1}{4}$t2-2t-3£©£¬ÔòQ£¨t£¬-$\frac{1}{2}$t-3£©£¬£¨-6£¼t£¼0£©
¡àPQ=-$\frac{1}{4}$t2-2t-3-£¨-$\frac{1}{2}$t-3£©=-$\frac{1}{4}$t2-$\frac{3}{2}$t=-$\frac{1}{4}$£¨t-3£©2+$\frac{9}{4}$£¬
¡àS¡÷PAC=$\frac{1}{2}$•PQ•6=3PQ=-$\frac{3}{4}$£¨t-3£©2+$\frac{27}{4}$£¬
µ±t=3ʱ£¬¡÷PACµÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{27}{4}$£¬´ËʱPµã×ø±êΪ£¨-3£¬$\frac{3}{4}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄÐÔÖʺÍÏàËÆÈý½ÇÐεÄÅж¨·½·¨£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»Ñ§»áÓù´¹É¶¨ÀíµÄÄ涨ÀíÖ¤Ã÷Ö±½ÇÈý½ÇÐΣ»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£»»áÀûÓ÷ÖÀàÌÖÂÛµÄ˼Ïë½â¾öÊýѧÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡÷ABC£®
£¨1£©Óó߹æ×÷ͼ×÷³öAµã¹ØÓÚBCµÄ¶Ô³ÆµãD£¨±£Áô×÷ͼºÛ¼££©£»
£¨2£©ÔÚ£¨1£©µÄÇé¿öÏ£¬Á¬½ÓCD¡¢AD£¬ÈôAB=5£¬AC=AD=8£¬ÇóBCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=2£¬BC=2$\sqrt{3}$£¬DÊÇBC±ßÉÏÒ»µã£¬Ö±ÏßED¡ÍBCÓÚµãD£¬½»ABÓÚµãE£¬CF¡ÎAB½»Ö±ÏßDEÓÚµãF£¬ÉèCD=x
£¨1£©µ±xÈ¡ºÎֵʱ£¬ËıßÐÎEACFÊÇÁâÐΣ¿Çë˵Ã÷ÀíÓÉ£»
£¨2£©µ±xÈ¡ºÎֵʱ£¬ËıßÐÎEACDµÄÃæ»ýµÈÓÚ$\frac{2}{3}$$\sqrt{3}$£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼ÆË㣺$\sqrt{12}$+£¨-$\frac{1}{2}$£©-1-2tan60¡ã-£¨-1£©2017£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬AC¡ÍBC£¬AC=BC=4£¬ÒÔACΪֱ¾¶×÷°ëÔ²£¬Ô²ÐÄΪµãO£»ÒÔµãCΪԲÐÄ£¬BCΪ°ë¾¶×÷»¡AB£¬¹ýµãO×÷BCµÄƽÐÐÏß½»Á½»¡ÓÚµãD¡¢E£¬ÔòÒõÓ°²¿·ÖµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{5}{3}¦Ð-2\sqrt{3}$B£®$\frac{5}{3}¦Ð-4$C£®$3¦Ð-2\sqrt{3}$D£®3¦Ð-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ò»´Îº¯Êýy=-$\frac{1}{2}$x+b£¨bΪ³£Êý£©µÄͼÏóÓëxÖá½»ÓÚµãA£¨2£¬0£©£¬ÓëyÖá½»ÓÚµãB£¬Óë·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó½»ÓÚµãC£¨-2£¬m£©£®
£¨1£©ÇóµãCµÄ×ø±ê¼°·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©¹ýµãCµÄÖ±ÏßÓëyÖá½»ÓÚµãD£¬ÇÒS¡÷CBD£ºS¡÷BOC=2£º1£¬ÇóµãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Å×ÎïÏßy=ax2+bx+cÓëxÖá½»ÓÚA£¨-1£¬0£¬£©¡¢B£¨3£¬0£©Á½µãÓëyÖá½»ÓÚµãC£¨0£¬3£©£¬µãDΪÅ×ÎïÏߵĶ¥µã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèµãPµÄ×ø±êΪ£¨a£¬0£©£¬µ±|PD-PC|×î´óʱ£¬ÇóaµÄÖµ£»
£¨3£©ÔÚÏ߶ÎBCÉÏ·½µÄÅ×ÎïÏßÉÏÓÐÒ»¶¯µãQ£¬µ±QÔ˶¯µ½ºÎλÖÃʱ£¬¡÷BCQµÄÃæ»ý×î´ó£»
£¨4£©ÔÚ×ø±êƽÃæÄÚÕÒÒ»µãE£¬Ê¹ÒÔB¡¢C¡¢D¡¢EΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬Ö±½Óд³öEµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â·½³Ì×飺$\left\{\begin{array}{l}x+y=22\\ x+z=-27\\ y+z=7\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Á¬ÐøÕûÊýÖ®¼äÓÐÐí¶àÉñÆæµÄ¹Øϵ£¬
È磺32+42=52£¬Õâ±íÃ÷Èý¸öÁ¬ÐøÕûÊýÖнÏСÁ½¸öÊýµÄƽ·½ºÍµÈÓÚ×î´óÊýµÄƽ·½£¬³ÆÕâÑùµÄÕýÕûÊý×éΪ¡°Ææ»ÃÊý×顱£¬½ø¶øÍƹ㣺ÉèÈý¸öÁ¬ÐøÕûÊýΪa£¬b£¬c£¨a£¼b£¼c£©
Èôa2+b2=c2£¬Ôò³ÆÕâÑùµÄÕýÕûÊý×éΪ¡°Ææ»ÃÊý×顱£»
Èôa2+b2£¼c2£¬Ôò³ÆÕâÑùµÄÕýÕûÊý×éΪ¡°Ä§»ÃÊý×顱£»
Èôa2+b2£¾c2£¬Ôò³ÆÕâÑùµÄÕýÕûÊý×éΪ¡°ÃλÃÊý×顱
£¨1£©ÈôÓÐÒ»×éÕýÕûÊý×éΪ¡°Ä§»ÃÊý×顱£¬Ð´³öËùÓеġ°Ä§»ÃÊý×顱£»
£¨2£©ÏÖÓм¸×é¡°¿Æ»ÃÊý×顱¾ßÓÐÏÂÃæµÄÌØÕ÷£º
ÈôÓÐ3¸öÁ¬ÐøÕûÊý£º$\frac{3^2+4^2+5^2}{25}$=2£»
ÈôÓÐ5¸öÁ¬ÐøÕûÊý£º$\frac{10^2+11^2+12^2+13^2+14^2}{365}$=2£»
ÈôÓÐ7¸öÁ¬ÐøÕûÊý£º$\frac{21^2+22^2+23^2+24^2+25^2+26^2+27^2}{2030}$=2£»
¡­
ÓÉ´Ë»ñµÃÆô·¢£¬Èô´æÔÚn£¨7£¼n£¼11£©¸öÁ¬ÐøÕýÕûÊýÒ²Âú×ãÉÏÊö¹æÂÉ£¬ÇóÕân¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸