|
科目:初中数学 来源: 题型:
已知抛物线y=-x2+2mxm2m+2.
(1)判断抛物线的顶点与直线L:y=-x+2的位置关系;
(2)设该抛物线与x轴交于M、N两点,当OM?ON=4,且OM≠ON时,求出这条抛物线的解析式;
(3)直线L交x轴于点A,(2)中所求抛物线的对称轴与x轴交于点B.那么在对称轴上是否存在点P,使⊙P与直线L和x轴同时相切.若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
1.求抛物线的解析式;
2.设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
3.如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时的点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年江苏省常州小河中学初三上学期期末考试数学试卷(带解析) 题型:解答题
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时的点E的坐标.
查看答案和解析>>
科目:初中数学 来源:2012-2013学年内蒙古九年级上学期期末考试数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系中,已知抛物线y=-x2+bx+c经过点A(0,1)、B(3,)两点,BC⊥x轴,垂足为C.点P是线段AB上的一动点(不与A,B重合),过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)求此抛物线的函数表达式;
(2)连结AM、BM,设△AMB的面积为S,求S关于t的函数关系式,并求出S的最大值;
(3)连结PC,当t为何值时,四边形PMBC是菱形.(10分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com