精英家教网 > 初中数学 > 题目详情
(2012•辽阳)如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是(  )
分析:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.
解答:解:∵将△ABC折叠,使得点A落在点B处,
∴AF=BF,
∵AB=AC,AB+BC=8,
∴△BCF的周长是:BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=8.
故选A.
点评:此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•辽阳)如图,反比例函数y=
k
x
(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是
6
6
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图,抛物线y=ax2+bx-3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点.P到x轴的距离为
10
3
,到y轴的距离为1.点C关于直线l的对称点为A,连接AC交直线l于B.
(1)求抛物线的表达式;
(2)直线y=
3
4
x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y=
3
4
x+m的表达式;
(3)若N为平面直角坐标系内的点,在直线y=
3
4
x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案