4£®ÒÑÖªÅ×ÎïÏßy=$\frac{1}{2}$x2+2£¨m+1£©x-m+1ÓëxÖá½»ÓÚµãA¡¢B£¬ÓëyÖá½»ÓÚµãC£¬Æä¶Ô³ÆÖáÊÇÖ±Ïßx=4£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽÊǶ¥µã×ø±ê£»
£¨2£©ÇóCµãµÄ×ø±ê¼°¡÷ABCµÄÃæ»ý£»
£¨3£©ÒÑÖªÓëxÖáƽÐеÄÖ±Ïßy=t¼°Å×ÎïÏ߶ԳÆÖáÉϵĵãD£¨4£¬t+1£©£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄtÖµ£¬Ê¹µÃÅ×ÎïÏßÉÏÈÎÒâÒ»µãP£¨a£¬b£©µ½ÕâÌõÖ±ÏߵľàÀëµÈÓÚPµãµ½DµãµÄ¾àÀ룿Èô´æÔÚ£¬ÔòÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Ôò˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓɶԳÆÖáx=-$\frac{b}{2a}$£¬ÇóµÃmµÄÊýÖµ£¬µÃ³öº¯Êý½âÎöʽ£¬ÔÙ½øÒ»²½ÇóµÃ¶¥µã×ø±ê¼´¿É£»
£¨2£©Áîx=0ÇóµÃÓëyÖá½»µãCµÄ×ø±ê£¬Áîy=0µÃ³öÓëxÖá½»µãµÄA¡¢BÁ½¸ö×ø±ê£¬½øÒ»²½ÇóµÃ¡÷ABCµÄÃæ»ý¼´¿É£»
£¨3£©Éè³öµãPµÄ×ø±ê£¬ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀëÇóµÃPE¡¢PD£¬ÁªÁ¢·½³Ì£¬ÇóµÃtµÄÊýÖµ£¬Ôò´æÔÚ£¬·ñÔò²»´æÔÚ£®

½â´ð ½â£º£¨1£©ÓÉx=-2£¨m+1£©=4£¬
½âµÃm=-3£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$x2-4x+4£¬¶¥µã×ø±êΪ£¨4£¬-4£©£»
£¨2£©Å×ÎïÏßy=$\frac{1}{2}$x2-4x+4ÓëyÖá½»ÓÚµãCµÄ×ø±êΪ£¨0£¬4£©£¬
Áîy=$\frac{1}{2}$x2-4x+4=0£¬
½âµÃ£ºx1=4+2$\sqrt{2}$£¬x2=4-2$\sqrt{2}$£¬
µãAµÄ×ø±êΪ£¨4-2$\sqrt{2}$£¬0£©£¬BµÄ×ø±êΪ£¨4+2$\sqrt{2}$£¬0£©£¬
Òò´Ë¡÷ABCµÄÃæ»ý=$\frac{1}{2}$¡Á4¡Á4$\sqrt{2}$=8$\sqrt{2}$£»
£¨3£©´æÔÚÕâÑùµÄtÖµ£¬Ê¹µÃÅ×ÎïÏßÉÏÈÎÒâÒ»µãP£¨a£¬b£©µ½ÕâÌõÖ±ÏߵľàÀëµÈÓÚPµãµ½DµãµÄ¾àÀ룮
ÉèPµãµÄ×ø±êΪ£¨m£¬$\frac{1}{2}$m2-4m+4£©£¬µãD£¨4£¬t+1£©£¬
PE=$\frac{1}{2}$m2-4m+4-t£¬
PD=$\sqrt{£¨4-m£©^{2}+[t+1-£¨\frac{1}{2}{m}^{2}-4m+4£©]^{2}}$
Ôò$\frac{1}{2}$m2-4m+4-t=$\sqrt{£¨4-m£©^{2}+[t+1-£¨\frac{1}{2}{m}^{2}-4m+4£©]^{2}}$£¬
½âµÃ£ºt=-$\frac{9}{2}$£¬
Òò´Ëµ±t=-$\frac{9}{2}$ʹµÃÅ×ÎïÏßÉÏÈÎÒâÒ»µãP£¨a£¬b£©µ½ÕâÌõÖ±ÏߵľàÀëµÈÓÚPµãµ½DµãµÄ¾àÀ룮

µãÆÀ ´ËÌ⿼²é¶þ´Îº¯ÊýµÄ×ÛºÏÊÔÌ⣬´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽÓë×ø±êÖáµÄ½»µã×ø±ê£¬Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬×¢ÒâÊýÐνáºÏ˼ÏëµÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÒÑÖªµãA£¨1£¬4£©£¬µãB£¨6£¬$\frac{2}{3}$£©ÊÇÒ»´Îº¯Êýy=kx+bͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{m}{x}$£¨m£¾0£©Í¼ÏóµÄ½»µã£¬AC¡ÍyÖáÓÚµãC£¬BD¡ÍxÖáÓÚµãD£®
£¨1£©¸ù¾ÝͼÏóÖ±½Ó»Ø´ð£ºÔÚµÚÒ»ÏóÏÞÄÚ£¬µ±xÈ¡ºÎֵʱ£¬Ò»´Îº¯ÊýµÄֵСÓÚ·´±ÈÀýº¯ÊýµÄÖµ£¿
£¨2£©ÇóÒ»´Îº¯Êý½âÎöʽ¼°mµÄÖµ£»
£¨3£©ÉèPÊÇÏ߶ÎABÉϵÄÒ»µã£¬Á¬½ÓPC£¬PD£¬Èô¡÷PCAºÍ¡÷PDBÃæ»ýÏàµÈ£¬ÇóµãP×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ò»Áп쳵Óɼ׵ؿªÍùÒҵأ¬Ò»ÁÐÂý³µÓÉÒҵؿªÍù¼×µØ£¬Á½³µÍ¬Ê±³ö·¢£¬ÔÈËÙÔ˶¯£®¿ì³µÀëÒҵصÄ·³Ìy1£¨km£©ÓëÐÐÊ»µÄʱ¼äx£¨h£©Ö®¼äµÄº¯Êý¹Øϵ£¬ÈçͼÖÐÏ߶ÎABËùʾ£®Âý³µÀë¼×µØµÄ·³Ìy2£¨km£©ÓëÐÐÊ»µÄʱ¼äx£¨h£©Ö®¼äµÄº¯Êý¹Øϵ£¬ÈçͼÖÐÏ߶ÎACËùʾ£®¸ù¾ÝͼÏó½øÐÐÒÔÏÂÑо¿£®
½â¶ÁÐÅÏ¢£º
£¨1£©¼×¡¢ÒÒÁ½µØÖ®¼äµÄ¾àÀëΪ450km£»
£¨2£©Ï߶ÎABµÄ½âÎöʽΪy1=450-150x£»Á½³µÔÚÂý³µ³ö·¢2СʱºóÏàÓö£»
ÎÊÌâ½â¾ö£º
£¨3£©Éè¿ì¡¢Âý³µÖ®¼äµÄ¾àÀëΪy£¨km£©£¬ÇóyÓëÂý³µÐÐʻʱ¼äx£¨h£©µÄº¯Êý¹Øϵʽ£¬²¢»­³öº¯ÊýµÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¼×¡¢ÒÒÁ½ÈËÔÚÒ»Ìõ³¤Îª500mµÄÖ±ÏßÅܵÀÉÏͬÆðµã¡¢Í¬ÏòÔÈËÙÅܲ½£¬ÒÑÖª¼×Ïȳö·¢2sºóÒÒÔÙ³ö·¢£¬Ïȵ½ÖÕµãµÄÈËÔ­µØÐÝÏ¢£¬Èçͼ±íʾµÄÊǼס¢ÒÒÁ½ÈËÖ®¼äµÄ¾àÀëy£¨m£©ÓëÒÒ³ö·¢µÄʱ¼ät£¨s£©µÄº¯Êý¹Øϵ£¬¸ø³öÒÔϽáÂÛ£º¢Ùa=8£»¢Úb=92£»¢Ûc=23£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢ÚC£®¢Ù¢ÛD£®¢Ú¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³ÖÐѧ×ÛºÏʵ¼ùС×éͬѧ£¬Ïë²âÁ¿½ðÁúɽ¹ÛÒô´ó·ðµÄ¸ß¶È£¬ËûÃÇÔÚɽ½ÅϵÄD´¦²âµÃɽ¶¥BµÄÑö½ÇΪ30¡ã£¬ÑØ×Åɽ½ÅÏòÇ°×ßÁË4Ã×´ïµ½E´¦£¬²âµÃ¹ÛÒô´ó·ðµÄÍ·¶¥AµÄÇã½ÇΪ45¡ã£¬ÒÑÖª½ðÁúɽµÄɽ¶¥¾àµØÃæµÄ±ê¸ß£¨Ï߶ÎBCµÄ³¤¶È£©Îª60Ã×£¬Çë¼ÆËã¹ÛÒô´ó·ðµÄ¸ß¶ÈΪ¶àÉÙÃ×£¿£¨½á¹û¾«È·µ½0.1Ã×£¬$\sqrt{3}$¡Ö1.73£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬¡÷ABCµÄ¶¥µã¶¼ÔÚ·½¸ñÖ½µÄ¸ñµãÉÏ£¬½«¡÷ABCÏò×óƽÒÆ1¸ñ£¬ÔÙÏòÉÏƽÒÆ3¸ñ£¬ÆäÖÐÿ¸ö¸ñ×ӵı߳¤Îª1¸öµ¥Î»³¤¶È£®
£¨1£©ÇëÔÚͼÖл­³öƽÒƺóµÄÈý½ÇÐÎA¡äB¡äC¡ä£»
£¨2£©ÈôÁ¬½ÓAA¡ä£¬CC¡ä£¬ÔòÕâÁ½ÌõÏ߶εĹØϵÊÇƽÐÐÇÒÏàµÈ£»
£¨3£©ÇóÎå±ßÐÎA¡äABCC¡äµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬µÈ±ßÈý½ÇÐÎABCÖУ¬µãD£¬E·Ö±ðΪAB£¬ACµÄÖе㣬Ôò¡ÏDECµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®150¡ãB£®120¡ãC£®60¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãP£¨-3£¬a2+1£©ËùÔÚµÄÏóÏÞÊÇ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx-2¾­¹ýA¡¢B£»Á½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬½»yÖáÓÚµãC£®ÒÑÖªA£¨-1£¬0£©£¬B£¨3£¬0£©£®
£¨1£©ÇóÅ×ÎïÏß¼°Ö±ÏßBCµÄ±í´ïʽ£»
£¨2£©Ö±ÏßnÓëyÖáƽÐУ¬·Ö±ð½»Å×ÎïÏß¡¢Ö±ÏßBCºÍxÖáÓÚµãD¡¢F¡¢E£®ÈôÖ±ÏßnÔÚO¡¢BÖ®¼äƽÒÆ£¬ÉèµãE£¨m£¬0£©£¬FD=h£®µ±mΪºÎֵʱ£¬hµÄÖµ×î´ó£¿²¢Çó³öËüµÄ×î´óÖµ£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷PCBÊÇÒÔµãCΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸