【题目】如图,梯形ABCD中,AB∥CD , AD=BC , 点E在边AD上,BE与AC相交于点O , 且∠ABE=∠BCA .
(1)求证:△BAE∽△BOA.
(2)求证:BOBE=BCAE.
【答案】
(1)
证明:在梯形ABCD中,
∵AB∥CD,AD=BC,
∴∠EAB=∠CBA
∵∠EBA=∠BCA,
∴△EBA∽△ACB
∴∠AEB=∠BAC
∵∠ABE=∠OBA
∴△BAE∽△BOA
(2)
答案:解答:∵△BAE∽△BOA,
∴=
∵∠BAC=∠OAB,
∠EBA=∠BCA
∴△OAB∽△BAC
∴=
∴=
∴BEBO=AEBC
【解析】(1)利用梯形的性质得到∠EAB=∠CBA , 从而证得△EBA∽△ACB , 然后利用相似三角形的性质得到∠AEB=∠BAC , 从而证明△BAE∽△BOA;(2)根据上题证得的△BAE∽△BOA得到 = , 然后再利用∠BAC=∠OAB、∠EBA=∠BCA证得△OAB∽△BAC , 从而得到 = , 再根据 =
得到BEBO=AEBC即可.
【考点精析】掌握相似三角形的判定与性质是解答本题的根本,需要知道相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量 | 单价(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用户3月份的用气量为60m3 , 则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,∠BAD的平分线交BD于点E , 交CD于点F , 交BC的延长线于点G , 则下列结论中正确的是( )
A.AE2=EFFG
B.AE2=EFEG
C.AE2=EGFG
D.AE2=EFAG
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正△ABC中,D、E分别在AC、AB上,且 = , AE=BE , 则有( )
A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一组管道如图1所示,其中四边形ABCD是矩形,O是AC的中点,管道由AB,BC,CD,DA,OA,OB,OC,OD组成,在BC的中点M 处放置了一台定位仪器.一个机器人在管道内匀速行进,对管道进行检测.设机器人行进的时间为x,机器人与定位仪器之间的距离为y,表示y与x的函数关系的图象大致如图2所示,则机器人的行进路线可能为( )
A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).
(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com