【题目】已知,如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。求证:AD垂直平分EF。
科目:初中数学 来源: 题型:
【题目】某文具店某几种型号的计算器每只进价 12 元、售价 20 元,多买优惠, 优惠方法是:凡是一次买 10 只以上的,每多买一只,所买的全部计算器每只就 降价 0.1 元,例如:某人买 18 只计算器,于是每只降价 0.1×(18-10)=0.8(元), 因此所买的 18 只计算器都按每只 19.2 元的价格购买,但是每只计算器的最低售 价为 16 元.
(1)求一次至少购买多少只计算器,才能以最低售价购买? (2)写出该文具店一次销售 x(x>10)只时,所获利润 y(元)与 x(只)之间的函数关系 式,并写出自变量 x 的取值范围;
(3)一天,甲顾客购买了 46 只,乙顾客购买了 50 只,店主发现卖 46 只赚的钱反 而比卖 50 只赚的钱多,请你说明发生这一现象的原因;当 10<x≤50 时,为了 获得最大利润,店家一次应卖多少只?这时的售价是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售服装,平均每天可售出件,每件盈利元,为扩大销售量,减少库存,该商场决定采取适当的降价措施,经调查发现,一件衣服降价元,每天可多售出件.
设每件降价元,每天盈利元,请写出与之间的函数关系式;若商场每天要盈利元,同时尽量减少库存,每件应降价多少元?
每件降价多少元时,商场每天盈利达到最大?最大盈利是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=AC,点D,E在边BC上,且BD=CE.
(1)求证: △ABD≌△ACE;
(2)若∠B=40°,AB=BE,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_______人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在第一个△ABA中,∠B=20°,AB=AB,在AB上取一点C,延长AA到A,使得AA=AC,得到第二个△AAC;在AC上取一点D,延长AA到A,使得AA=AD;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的底角的度数为( )
A.5°B.10°C.170°D.175°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店两次购进一批同型号的热水壶和保温杯,第一次购进 12 个热水壶和 15 个保温杯,共用去资金 2850 元,第二次购进 20 个热水壶和 30 个保温杯,用去资金 4900元(购买同一商品的价格不变)
(1)求每个热水壶和保温杯的采购单价各是多少元?
(2)若商场计划再购进同种型号的热水壶和保温杯共 80 个,求所需购货资金 w(元) ,购买热水壶的数量 m(个)的函数表达式.
(3)在(2)的基础上,若准备购买保温杯的数量是热水壶数量的 3 倍,则该商店需要准备多少元的购货资金?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com