精英家教网 > 初中数学 > 题目详情
4.如图,△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点,

(1)探究图1:如果沿直线DE折叠,则∠BDA′与∠A的关系是∠BDA′=2∠A;
(2)探究图2:如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由;
(3)探究图3:如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由;
(4)探究图4:若将四边形纸片ABCD折成图4的形状,直接写出∠DE A′、∠CF B′、∠A和∠B四个角之间的数量关系∠1+∠2=2(∠A+∠B)-360°.

分析 (1)先根据折叠性质得∠A=∠AA′D,然后根据三角形外角性质易得∠BDA′=2∠A;
(2)图②,连结AA′,先根据三角形外角性质得∠BDA′=∠1+∠2,∠CEA=∠3+∠4,则∠BDA′+∠CEA=∠A+∠A′,所以∠BDA′+∠CEA′=2∠A;
(3)理由如下:图③,由折叠性质得∠A′=∠A,∠DEA′=∠DEA,∠A′DE=∠ADE,再根据三角形内角和得(∠A′+∠A)+(∠DEA′+∠DEA)+(∠A′DE+∠ADE)=360°,接着利用平角定理得到2∠A+(180°+∠CEA′)+(180°-∠BDA′)=360°,然后整理得到∠BDA′-∠CEA′=2∠A;
(4)先由折叠性质得∠A′EF=∠AEF,∠B′FE=∠BFE,然后根据平角定义和四边形内角和得到∠1+∠2=180°-(∠A′EF+∠AEF)+180°-(∠B′FE+∠BFE)=2(∠A+∠B)-360°.

解答 解:(1)∠BDA′=2∠A,
理由:∵△ABC沿直线DE折叠,使A点落在CE上,图①,
∴∠A=∠AA′D,
∴∠BDA′=∠A+∠AA′D=2∠A;
故答案为:∠BDA′=2∠A;

(2)∠BDA′+∠CEA′=2∠A,
理由:图②,连结AA′,
∵∠BDA′=∠1+∠2,∠CEA=∠3+∠4,
∴∠BDA′+∠CEA=∠1+∠3+∠2+∠4=∠A+∠A′,
而∠A=∠AA′D,
∴∠BDA′+∠CEA′=2∠A;

(3)∠BDA′-∠CEA′=2∠A.
理由如下:图③,
由翻折可得:∠A′=∠A,∠DEA′=∠DEA,∠A′DE=∠ADE,
由内角和性质得:(∠A′+∠A)+(∠DEA′+∠DEA)+(∠A′DE+∠ADE)=360°,
∴2∠A+(180°+∠CEA′)+(180°-∠BDA′)=360°
∴2∠A+∠CEA′-∠BDA′=0,
∴∠BDA′-∠CEA′=2∠A;

(4)由折叠性质得∠A′EF=∠AEF,∠B′FE=∠BFE,
∴∠1+∠2=180°-(∠A′EF+∠AEF)+180°-(∠B′FE+∠BFE)
=180°-2∠AEF+180°-2∠BFE
=360°-2(360°-∠A-∠B)
=2(∠A+∠B)-360°.
故答案为∠1+∠2=2(∠A+∠B)-360°.

点评 本题考查了三角形内角和定理:三角形内角和是180°.也考查了折叠的性质、三角形外角性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,⊙O的直径AB=4,C是⊙O上一点,连接OC.过点C作CD⊥AB,垂足为D,过点B作BM∥OC,在射线BM上取点E,使BE=BD,连接CE.
(1)当∠COB=60°时,直接写出阴影部分的面积;
(2)求证:CE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.用适当方法解下列二元一次方程组:
(1)$\left\{\begin{array}{l}{3x+4y=19}\\{x-y=4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x-2y=5}\\{2x+3y=-1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.为了美化校园环境,争创绿色学校,某县教育局委托园林公司对A,B两校进行校园绿化,已知A校有如图(1)的阴影部分空地需铺设草坪,B校有如图(2)的阴影部分空地需铺设草坪,在甲、乙两地分别有同种草皮3500米2和2500米2出售,且售价一样,若园林公司向甲、乙两地购买草皮,其路程和运费单价表如下:
路程、运费单价表
 A校B校
路程(千米)运费单价(元)路程(千米)运费单价(元)
甲地200.15100.15
乙地150.20200.20
(注:运费单价表示每平方米草皮运送1千米所需的人民币)

求:(1)分别求出图1、图2的阴影部分面积;
(2)若园林公司将甲地3500m2的草皮全部运往A校,请你求出园林公司运送草皮去A、B两校的总运费;
(3)请你给出一种运送方案,使得园林公司支付出送草皮的总运费不超过15000元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,B、C两点把线段AD分成2:5:3的三部分,M为AD的中点,BM=9cm,求CM和AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.正方形ABCD中,E、F分别在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一点,且∠BGD=120°,连接EF、BG、FG、EF、BG交于点H,则下面结论:①DE=DF;②△BEF是等边三角形;③∠BGF=45°;④BG=EG+FG中,正确的是①②④(请填番号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,直线l1:y=$\frac{4}{3}$x+4分别与x轴、y轴交于A、B两点,点C为x轴上任意一点,直线l2:y=-$\frac{3}{4}$x+b经过点C,且与直线l1交于点D,与y轴交于点E,连结AE.
(1)当点C的坐标为(2,0)时,
①求直线l2的函数表达式;
②求证:AE平分∠BAC;
(2)问:是否存在点C,使△ACE是以CE为一腰的等腰三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,?ABCD的对角线AC、BD相交于点O,点E、F分别是线段AO、BO的中点,若AC+BD=22cm,△OAB的周长是16cm,则EF的长为2.5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.“十二五”期间,将新建保障性住房约37000000套,用于解决中低收入和新参加工作的大学生住房的需求,把37000000用科学记数法表示应该是3.7×107

查看答案和解析>>

同步练习册答案