精英家教网 > 初中数学 > 题目详情
12.如图所示,在每个边长都为1的小正方形组成的网格中,点A、B、C均为格点.
(Ⅰ)线段AB的长度等于5;
(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).

分析 (Ⅰ)根据勾股定理可求线段AB的长度;
(Ⅱ)取格点D、E、F,连结DE与AB交于点P,延长ED与CF交于点,四边形PAQC即为所求.

解答 解:(Ⅰ)线段AB的长度为:$\sqrt{{3}^{2}+{4}^{2}}$=5;

(Ⅱ)如图所示:四边形PAQC即为所求.

故答案为:5.

点评 本题主要考查了应用与设计作图以及勾股定理的运用,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.如图,矩形ABCD中,AB=8,BC=3,顶点A,B分别在y轴和x轴上,当点A在y轴上移动时,点B也随之在x轴上移动,在移动过程中,OD的最大值为(  )
A.8B.$\sqrt{73}$C.$\sqrt{85}$D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC在直角坐标系中,
(1)写出△ABC各点的坐标.A(-1,-1)B(4,2)C(1,3).
(2)若把△ABC向上平移1个单位,再向右平移3个单位得△A′B′C′,在图中画出△A′B′C′,并写出A′、B′、C′的坐标.A′(2,0)B′(7,3)C′(4,4).
(3)连结CA′,CB′,则△CA′B′的面积是5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知等腰△ABC,建立适当的直角坐标系后,其三个顶点的坐标分别为A(m,0).B(m+4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是(  )
A.AC=BC≠ABB.AB=AC≠BCC.AB=BC≠ACD.AB=AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,AB∥CD,∠D=∠E=35,则∠B的度数为(  )
A.60°B.65°C.70°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A的坐标是(a,b)
则经过第2017次变换后所得的A点坐标是(a,-b).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1,y1),点B坐标为(x2,y2),把式子$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$称为函数L从x1到x2的平均变化率;对于函数K:y=2x2-3x+1图象上有两点A(x1,y1)和B(x2,y2),当x1=1,x2-x1=$\frac{1}{3}$时,函数K从x1到x2的平均变化率是$\frac{5}{3}$;当x1=1,x2-x1=$\frac{1}{n}$(n为正整数)时,函数K从x1到x2的平均变化率是$\frac{n+2}{n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
如:(2+i)+(3-4i)=(2+3)+(1-4)i=5-3i,
(5+i)(3-4i)=5×3+5×(-4i)+i×3+i×(-4i)=15-20i+3i-4i2=19-17i
请根据以上内容的理解,利用以前学习的有关知识将(1+2i)(1-3i)化简结果为7-i.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,点A(2,2$\sqrt{3}$),N(1,0),∠AON=60°,点M为平面直角坐标系内一点,且MO=MA,则MN的最小值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案