精英家教网 > 初中数学 > 题目详情

【题目】ab是新规定的一种运算法则:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

(1)求(﹣3)5的值;

(2)若(﹣2)x=6,求x的值;

(3)若3(2x)=﹣4+x,求x的值.

【答案】(1)-6;(2)-1;(3)-5;

【解析】

(1)直接根据ab=a2+ab计算即可;

(2)(3)根据ab=a2+ab,把所给方程转化为常规方程求解即可.

(1)根据题意得:(﹣3)5=(﹣3)2﹣3×5=9﹣15=﹣6;

(2)利用题中新定义化简(﹣2)x=6得:4﹣2x=6,

解得:x=﹣1;

(3)根据题中的新定义化简2x=4+2x,3(2x)=3(4+2x)=9+12+6x=6x+21,

3(2x)=﹣4+x得: 6x+21=﹣4+x,

解得:x=﹣5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

A、B、C为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是(A,B)的妙点.

例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的妙点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的妙点,但点D是(B,A)的妙点.

知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.

(1)数   所表示的点是(M,N)的妙点;

(2)如图3,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发向左运动,到达点A停止.P点运动多少个单位时,P、AB中恰有一个点为其余两点的妙点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.

(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第6个小房子用的石子数量为 ( )

A. 87 B. 77 C. 70 D. 60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为 a的正方形ABCD和边长为 b的正方形BEFG排放在一起,O1和O2分别是这两个正方形的中心,则阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m<5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:

0

8

2

8

10

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12


(1)样本数据中为甲级的频率为;(直接填空)
(2)求样本中乙级数据的中位数和众数.
(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.
(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p= ),写出p与x之间的函数关系式,并说明p随x的变化情况;
(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人同时从相距25千米的A地去B地,甲骑摩托车,乙骑自行车,甲的速度是乙的速度的3倍,甲到达B地后停留了30分钟,然后从B地返回A地,在途中遇见了乙,此时距他们出发的时间刚好是1小时,则甲的速度是(  )

A. 20千米/小时 B. 60千米/小时

C. 25千米/小时 D. 75千米小时

查看答案和解析>>

同步练习册答案