精英家教网 > 初中数学 > 题目详情
12.已知在直角梯形ABCD中,∠ABC=90°,AB=BC,点P是梯形内一点,且PA=1,PB=2,PC=3
(1)求∠APB的度数;
(2)求边AB的平方.

分析 (1)将△APB绕B点顺时针旋转90°并连接PE,构造两个直角三角形:Rt△PBE和Rt△PCE,利用勾股定理逆定理解答即可;
(2)连接PE、CE、AC,则PE=2$\sqrt{2}$.由SAS定理得出△ABP≌△CBE,故∠APB=∠CEB,CE=PA=1.根据∠APE=∠APB+∠BPE=180°可得出A、P、E三点共线,AE=PA+PE,再由S△ABC=S△PAB+S△PBC+S△PAC,即可得出结论.

解答 解:(1)如图,

将△ABP绕点B按顺时针方向旋转90°,使AB与BC重合;
则∠PBE=90°,BE=BP=2,EC=PA=1;
由勾股定理得:PE2=22+22=8;
∵EC2=12=1,PC2=32=9,
∴PC2=PE2+EC2
∴∠PEC=90°;而∠BEP=45°,
∴∠BEC=135°,∠APB=∠BEC=135°;

(2)如图,连接PE、CE、AC,则PE=2$\sqrt{2}$.

∵∠ABC=90°=∠PBE,
∴∠ABP=∠CBE.
∵AB=BC,BP=BE,
在△ABP与△CBE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABP=∠CBE}\\{BP=BE}\end{array}\right.$,
∴△ABP≌△CBE(SAS),
∴∠APB=∠CEB,CE=PA=1.
∵PE2+CE2=P=PC2
∴∠PEC=90°,
∴∠APB=∠CEB=135°,
∴∠APE=∠APB+∠BPE=180°,
∴A、P、E三点共线,
∴AE=PA+PE=1+2$\sqrt{2}$,
∴S△ACE=$\frac{1}{2}$AE•CE=$\frac{1+2\sqrt{2}}{2}$,S△PBE=$\frac{1}{2}$PB•BE=2,
∴S△ABC=S△PAB+S△PBC+S△PAC
=S△EBC+S△PBC+S△PAC
=S△PBE+S△ACE
=$\frac{5+2\sqrt{2}}{2}$=$\frac{1}{2}$AB2
∴AB2=5+2$\sqrt{2}$.

点评 本题考查的是旋转的性质,勾股定理逆定理,三角形的面积,熟知图形旋转不变性的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知抛物线经过点A(1,3)、B(2,1)、C(-2,15),求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在△ABC中,∠ABC=45°,AB=4$\sqrt{2}$,BD⊥BC,且BD=2,若AD⊥AC,则S△ABC=12或20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知S△BDF=19cm2,AB:AC=1:4;AF:AE=1:3;CD:CE=1:5,求△ACE的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.我们知道,图形通过平移、旋转、翻折变换后,不改变图形的形状和大小,只改变图形的位置.

(1)一次函数y=x-1的图象是由正比例函数y=x图象向右平移1个单位长度得到;
(2)已知函数y=$\frac{2}{x}$(x>0)图象如图①,在下面坐标系中画出函数y=$\frac{2}{x+1}$(x>-1)的图象,并观察函数y=$\frac{2}{x+1}$的图象是由函数y=$\frac{2}{x}$图象经过怎样的变换得到的;
(3)在平面直角坐标系中,矩形ABCD位置如图②,其中A、B、C三点的坐标分别为A(1,-1)、B(1,-2)、C(4,-2),现将反比例函数y=$\frac{2}{x}$图象沿x轴正方向平移,若平移速度为每秒1个单位长度.
①设函数图象平移时间为t秒,求函数图象与矩形ABCD有公共点时t的取值范围;
②在平移过程中,当函数图象与矩形ABCD有公共点时,求函数图象扫过的区域夹在直线AD、BC之间的图形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.有一列数a1,a2,a3,…,an,满足下列条件:a1=0,|a2|=|a1+1|,|a3|=|a2+1|,…,|an|=|an-1+1|.求证:a1,a2,a3,…,an这n个数的算术平均数不小于$-\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.三个连续偶数的和是24,设中间的偶数为n,则可列出的方程为(  )
A.n+(n+2)+(n+4)=24B.n+(n-2)+(n-4)=24C.(n-2)+n+(n+2)=24D.(n-4)+2n+(n+4)=24

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC中,∠C=60°,AD,BE分别平分∠CAB,∠CBA、AD、BE交于点P.求证:
(1)∠APB=120°;
(2)点P在∠C的平分线上;
(3)AB=AE+BD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,点D,E在△ABC的边BC上,则图中共有三角形6个.

查看答案和解析>>

同步练习册答案