精英家教网 > 初中数学 > 题目详情
(2013•湛江)阅读下面的材料,先完成阅读填空,再按要求答题:
sin30°=
1
2
,cos30°=
3
2
,则sin230°+cos230°=
1
1
;①
sin45°=
2
2
,cos45°=
2
2
,则sin245°+cos245°=
1
1
;②
sin60°=
3
2
,cos60°=
1
2
,则sin260°+cos260°=
1
1
.③

观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=
1
1
.④
(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;
(2)已知:∠A为锐角(cosA>0)且sinA=
3
5
,求cosA.
分析:①②③将特殊角的三角函数值代入计算即可求出其值;
④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1;
(1)过点B作BD⊥AC于D,则∠ADB=90°.利用锐角三角函数的定义得出sinA=
BD
AB
,cosA=
AD
AB
,则sin2A+cos2A=
BD2+AD2
AB2
,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1;
(2)利用关系式sin2A+cos2A=1,结合已知条件cosA>0且sinA=
3
5
,进行求解.
解答:解:∵sin30°=
1
2
,cos30°=
3
2

∴sin230°+cos230°=(
1
2
2+(
3
2
2=
1
4
+
3
4
=1;①
∵sin45°=
2
2
,cos45°=
2
2

∴sin245°+cos245°=(
2
2
2+(
2
2
2=
1
2
+
1
2
=1;②
∵sin60°=
3
2
,cos60°=
1
2

∴sin260°+cos260°=(
3
2
2+(
1
2
2=
3
4
+
1
4
=1.③
观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④
(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.
∵sinA=
BD
AB
,cosA=
AD
AB

∴sin2A+cos2A=(
BD
AB
2+(
AD
AB
2=
BD2+AD2
AB2

∵∠ADB=90°,
∴BD2+AD2=AB2
∴sin2A+cos2A=1.

(2)∵sinA=
3
5
,sin2A+cos2A=1,∠A为锐角,
∴cosA=
1-(
3
5
)2
=
4
5
点评:本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

22、阅读下题及证明过程:
已知:如图,在△ABC中,点D是BC上的一点,点E是AD上的一点,且EB=EC,∠ABE=∠ACE
求证:∠BAE=∠CAE
证明:在△AEB和△AEC中
EB=EC(  )
∠ABE=∠ACE(  )
AE=AE(  )
∴△AEB≌△AEC(  )
∴∠BAE=∠CAE(  )
上面的证明过程是否正确?若认为正确,请在各步后面的括号内填入依据:若认为不正确,请给予正确的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
   2S=2+22+23+24+25+…+22013+22014
   将下式减去上式得2S-S=22014-1
   即S=22014-1
   即1+2+22+23+24+…+22013=22014-1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湛江)四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湛江)计算:|-6|-
9
-(-1)2

查看答案和解析>>

同步练习册答案