精英家教网 > 初中数学 > 题目详情
(1997•北京)已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边所成的角的正切值等于
12
.设梯形的面积为S,梯形中较短的底的长为x,试写出梯形面积S关于x的函数关系式,并指出自变量x的取值范围.
分析:画出图形,先求出矩形的较长的边与较短的边的范围,然后分①AE与较短的边的夹角的正切值等于
1
2
时,设BE=m,表示出AB,再根据矩形的周长列式表示出m,然后根据梯形的面积公式列式整理即可得解,再根据BE与BC的长度范围求出x的取值范围;②AE与较长的边的夹角的正切值等于
1
2
时,设AB=CD=n,表示出BE,然后根据矩形的周长表示出m,再根据矩形的面积公式列式整理即可得解,再根据BE、BC的长度范围求出x的取值范围.
解答:解:∵矩形ABCD的长大于宽的2倍,矩形的周长为12,
∴AD>4,AB<2,
根据题意,可分为以下两种情况:
第一种情况,如图1,
当tan∠BAE=
1
2
时,设CE=x,BE=m,
则AB=DC=2m,AD=m+x,
∵AB+AD=6,
∴2(2m+m+x)=12,
m=
6-x
3

S梯形AECD=
1
2
(AD+EC)•DC,
=
1
2
[(m+x)+x]•2m,
=m(m+2x),
=
6-x
3
6+5x
3

=-
5
9
x2+
8
3
x+4,
6-x
3
>0,
6-x
3
+x>4,
∴x<6,x>3,
∴x的取值范围是3<x<6;

第二种情况,如图2,
tan∠AEB=
1
2
时,
设CE=x,AB=CD=n,
则BE=2n,AD=2n+x,
∵矩形的周长为12,
∴AB+AD=6,
∴2(n+2n+x)=12,n=
6-x
3

S梯形AECD=
1
2
(AD+EC)•DC,
=
1
2
[(2n+x)+x]•n,
=n(n+x),
=
6-x
3
6+2x
3

=-
2
9
x2+
2
3
x+4,
6-x
3
>0,2×
6-x
3
+x>4,
∴x<6,x>0,
∴x的取值范围是0<x<6.
点评:本题考查了矩形的性质,解直角三角形,梯形的面积公式,难点在于要分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•北京)已知,如图,AB为⊙O的直径,AC与⊙O相切于点A,CE∥AB交⊙O于D、E.求证:EB2=CD•AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•北京)已知:关于x的方程x2-3x+2k-1=0的两个实数根的平方和不小于这两个根的积,且反比例函数y=
1+2kx
的图象的两个分支在各自的象限内y随x的增大而减小.求满足上述条件的k的整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•北京)已知:如图,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在该坐标平面内,设这个落点为D,CD交x轴于点E.如果CE=5,OC、OE的长是关于x的方程x2+(m-1)x+12=0的两个根,并且OC>OE.
(1)求点D的坐标;
(2)如果点F是AC的中点,判断点(8,-20)是否在过D、F两点的直线上,并说明现由.

查看答案和解析>>

同步练习册答案