精英家教网 > 初中数学 > 题目详情

【题目】如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是(

A.互相平分B.相等C.互相垂直D.互相垂直平分

【答案】C

【解析】

由于顺次连接四边形各边中点得到的四边形是平行四边形,再由矩形的判定可知,依次连接对角线互相垂直的四边形各边的中点所得四边形是矩形.

根据题意画出图形如下:
答:ACBD 的位置关系是互相垂直.
证明:∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点EF、分别是ADAB、各边的中点,
EF是三角形ABD的中位线,
EFBD
∴∠FEH=OMH=90°,
又∵点EH分别是ADCD各边的中点,
EH是三角形ACD的中位线,
EHAC
∴∠OMH=COB=90°,
ACBD
故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线x轴交于点A3,0)和点B,与y轴相交于点C0,3),抛物线的顶点为点D

1)求抛物线的表达式及顶点D的坐标;

2)联结ADACCD,求∠DAC的正切值;

3)如果点P是原抛物线上的一点,且∠PAB=DAC,将原抛物线向右平移m个单位(m>0),使平移后新抛物线经过点P,求平移距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A11),B40),C44).

1)按下列要求作图:

①将△ABC向左平移4个单位,得到△A1B1C1

②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2

2)求点C1在旋转过程中所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为m2),种草所需费用1(元)与m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+300000≤≤1000).

(1)请直接写出k1k2和b的值;

(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;

(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.

(1)求面料和里料的单价;

(2)该款外套9月份投放市场的批发价为150/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.

①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)

②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.

1)求购买一根跳绳和一个毽子分别需要多少元;

2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两列火车分别从AB两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S(千米)、S(千米)与行驶时间t(时)的函数图象的一部分.

1)分别求出SSt的函数关系式(不必写出t的取值范围);

2)求AB两城之间的距离,及t为何值时两车相遇;

3)当两车相距300千米时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.点从点出发,沿以每秒个单位的速度运动.点从点出发,沿以每秒个单位的速度运动,点到达点时,两点同时停止运动.点不与点重合时,以为邻边作.设点的运动时间为秒.

1)用含的代数式表示的长;

2)当点落在边上时,求的值;

3)当点边上时,设重叠部分图形面积为之间的函数关系式.

4)连结,当射线平分面积时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数(人)与时间(分钟)的变化情况,数据如下表:(表中9-15表示

时间(分钟)

0

1

2

3

4

5

6

7

8

9

9~15

人数(人)

0

170

320

450

560

650

720

770

800

810

810

1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出之间的函数关系式;

2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?

3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?

查看答案和解析>>

同步练习册答案