精英家教网 > 初中数学 > 题目详情

【题目】如图,C是线段AB上一点,M是线段AC的中点,N是线段BC的中点.

(1)如果AB=20 cm,AM=6 cm,求NC的长;

(2)如果MN=6 cm,求AB的长.

【答案】(1) 4 cm;(2) 12cm.

【解析】1)先求出AC再求出BC根据线段的中点求出即可

2)求出BC=2CNAC=2CMMN=CN+MC=6cm代入求出即可.

1∵点M是线段AC的中点AC=2AM

AM=6cmAC=12cm

AB=20cmBC=ABAC=8cm

∵点N是线段BC的中点NC=BC=4cm

2∵点M是线段AC的中点N是线段BC的中点BC=2NCAC=2MC

MN=NC+MC=6cmAB=BC+AC=2×6cm=12cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明家(记为A)、他上学的学校(记为B)、书店(记为C)依次坐落在一条东西走向的大街上,小明家位于学校西边250米处,书店位于学校东边100米处,小明中午放学后,到书店买本辅导书,然后回家吃中午饭,下午直接去学校上课.

(1)试用数轴表示出小明家(A)、学校(B)、书店(C)的位置;

(2)计算出小明家与书店的距离;

(3)小明从中午放学离校到下午上学到校一共走了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.

(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?

(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?

(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是(
A. ?
B. ?
C. ?
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1)992-102×98;

(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.

【答案】(1)-195(2)2xy-2

【解析】试题分析:(1)利用平方差公式,完全平方公式简便计算.

(2)提取公因式,化简.

试题解析:

(1)原式=(100-1)2-(100+2)×(100-2)

=(1002-200+1)-(1002-4)=-200+5=-195.

(2)原式=[x2yxy-1)-x2y(1-xy)]÷x2y

=2x2yxy-1)÷x2y=2(xy-1)=2xy-2.

型】解答
束】
21

【题目】1先化简,再求值:aa-2b+a+b2,其中a=-1b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算:

(1)78-23÷70=70÷70=1;

(2)12-7×(-4)+8÷(-2)=12+28-4=36;

(3)12÷(2×3)=12÷2×3=6×3=18;

(4)32×3.14+3×(-9.42)=3×9.42+3×(-9.42)=0.

其中错误的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).

(1)求此抛物线的解析式;
(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;
(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DBAC,且DB=ACEAC的中点,

1)求证:BC=DE

2)连接ADBE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图是由一些火柴棒搭成的图案:

(1)摆第①个图案用 根火柴棒,摆第②个图案用 根火柴棒,摆第③个图案用 根火柴棒.

(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?

(3)计算一下摆121根火柴棒时,是第几个图案?

查看答案和解析>>

同步练习册答案