精英家教网 > 初中数学 > 题目详情

对于反比例函数 ,下列说法正确的是

   A.图象经过点(2,-1)            B.图象位于第二、四象限

C.图象是中心对称图形             D.当x<0时,yx的增大而增大

 

【答案】

C

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道,对于二次函数y=a(x+m)2+k的图象,可由函数y=ax2的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离
m2+k2
称为朋友距离.
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数y=
k
x
都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=
12+32
=
10

(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向
 
,再向下平移7单位,相应的朋友距离为
 

(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离.
(3)探究三:为函数y=
3x+4
x+1
和它的基本函数y=
1
x
,找到朋友路径,并求相应的朋友距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•白下区二模)对于反比例函数y=-
3
x
,下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像  进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。

由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。

如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.

1.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向      ,再向下平移7单位,相应的朋友距离为            

2.(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。

3.(3)探究三:为函数和它的基本函数,找到朋友路径,

    并求相应的朋友距离。

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年浙江省金华市浦江六中上学期九年级月考数学卷 题型:解答题

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像 进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.
【小题1】(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向     ,再向下平移7单位,相应的朋友距离为            
【小题2】(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。
【小题3】(3)探究三:为函数和它的基本函数,找到朋友路径,
并求相应的朋友距离。

查看答案和解析>>

科目:初中数学 来源:2011-2012年浙江省金华市上学期九年级月考数学卷 题型:解答题

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像  进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。

由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。

如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.

1.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向      ,再向下平移7单位,相应的朋友距离为            

2.(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。

3.(3)探究三:为函数和它的基本函数,找到朋友路径,

     并求相应的朋友距离。

 

 

查看答案和解析>>

同步练习册答案